Skip to main content

Comprehensive Analysis of Software-Based Fault Tolerance with Arithmetic Coding for Performant Encoding of Integer Calculations

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2022)

Abstract

Safety-critical systems are becoming more complex with use cases like autonomous driving or human-robot collaboration. Therefore, the performance impact of software-based fault-tolerance methods is challenging. Using software-based fault tolerance is an attractive approach because commercial off-the-shelf hardware can be used. One possibility to implement software-based fault tolerance are arithmetic codes, already used in safety-critical products. Recently, AN codes have received particular attention; however, they have a significant performance impact in complex safety applications that require 64-bit wide integer calculations. Therefore, we comprehensively analyze different arithmetic codes in this work to identify the best suitable 64-bit integer support. We identify the ones’ complement as the best matching encoding strategy through new code metrics, fault simulations, and performance analysis. We validate our results by applying ones’ complement coding to a sample algorithm. Performance measurements and fault injection simulation confirm our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code of all analyses and measurements in this paper can be found at https://github.com/iswunistuttgart/arithmetic-coding-int.

  2. 2.

    https://github.com/eliben/pycparser.

  3. 3.

    https://software.intel.com/en-us/articles/pintool.

  4. 4.

    https://bitbucket.org/db7/bfi.

References

  1. Avizienis, A.: Arithmetic error codes: cost and effectiveness studies for application in digital system design. IEEE Trans. Comput. C-20(11), 1322–1331 (1971)

    Google Scholar 

  2. Aviziens, A.: Fault-tolerant systems. IEEE Trans. Comput. C-25(12), 1304–1312 (1976)

    Google Scholar 

  3. Braun, J., Mottok, J.: The myths of coded processing. In: 17th International Conference on High Performance Computing and Communications, pp. 1637–1644. IEEE (2015)

    Google Scholar 

  4. Dubrova, E.: Fault-Tolerant Design. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-2113-9

    Book  MATH  Google Scholar 

  5. Engel, H.: Data flow transformations to detect results which are corrupted by hardware faults. In: IEEE High-Assurance Systems Engineering Workshop, pp. 279–285. IEEE Computer Society Press (1997)

    Google Scholar 

  6. Fischer, M., Riedel, O., Lechler, A.: Arithmetic coding for floating-points and elementary mathematical functions. In: 5th International Conference on System Reliability and Safety (ICSRS), pp. 270–275. IEEE (2021)

    Google Scholar 

  7. Fischer, M., Riedel, O., Lechler, A., Verl, A.: Arithmetic coding for floating-point numbers. In: IEEE Conference on Dependable and Secure Computing (DSC), pp. 01–08. IEEE (2021)

    Google Scholar 

  8. Forin, P.: Vital coded microprocessor principles and application for various transit systems. IFAC Proc. Vol. 23(2), 79–84 (1990)

    Article  Google Scholar 

  9. Früchtl, M.: Sicherheit eingebetteter Systeme auf Basis arithmetischer Codierungen. Ph.D. thesis, Universität Kassel, Kassel (2014)

    Google Scholar 

  10. Haddadin, S., de Luca, A., Albu-Schaffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017)

    Article  Google Scholar 

  11. ISO/IEC: IEC 61508-2 functional safety of electrical/electronic/programmable electronic safety-related systems - part 2: requirements for electrical/electronic/programmable electronic safety-related systems

    Google Scholar 

  12. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Elsevier Morgan Kaufmann, Amsterdam (2007)

    MATH  Google Scholar 

  13. Kuvaiskii, D., Fetzer, C.: Delta-encoding: practical encoded processing. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014), pp. 13–24. IEEE Computer Society (2015)

    Google Scholar 

  14. Kwan, D., Shtoyk, K., Serebryany, K., Lifantsev, M.L., Hochschild, P.: SiliFuzz: fuzzing CPUs by proxy. Technical report, Google (2021)

    Google Scholar 

  15. Mukherjee, S.: Architecture Design for Soft Errors. Elsevier, Burlington (2008)

    Google Scholar 

  16. Oh, N., Mitra, S., McCluskey, E.J.: ED4I: error detection by diverse data and duplicated instructions. IEEE Trans. Comput. 51(2), 180–199 (2002)

    Article  Google Scholar 

  17. O’Halloran, M., Hall, J.G., Rapanotti, L.: Safety engineering with COTS components. Reliab. Eng. Syst. Saf. 160, 54–66 (2017)

    Article  Google Scholar 

  18. Omidi, R., Towhidy, A., Mohammadi, K.: A survey on the best choice for modulus of residue code. Indones. J. Electr. Eng. Inform. (IJEEI) 7(4), 734–741 (2020)

    Google Scholar 

  19. Omondi, A.R.: Cryptography Arithmetic: Algorithms and Hardware Architectures. Advances in Information Security, vol. 77. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34142-8

    Book  MATH  Google Scholar 

  20. Osinski, L., Langer, T., Mottok, J.: A survey of fault tolerance approaches at different architecture levels. In: Trinitis, C., Pionteck, T. (eds.) ARCS 2017. VDE Verlag GmbH (2017)

    Google Scholar 

  21. Profeta, J.A., et al.: Safety-critical systems built with COTS. Computer 29(11), 54–60 (1996)

    Article  Google Scholar 

  22. Reis, G.A., Chang, J., August, D.I.: Automatic instruction-level software-only recovery. In: International Conference on Dependable Systems and Networks, pp. 83–92. IEEE Computer Society (2006)

    Google Scholar 

  23. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: software implemented fault tolerance. In: International Symposium on Code Generation and Optimization, pp. 243–254. IEEE Computer Society (2005)

    Google Scholar 

  24. Schiffel, U.: Hardware error detection using AN-codes. Ph.D. thesis, Technischen Universität Dresden, Dresden (2011)

    Google Scholar 

  25. Schuster, S., Ulbrich, P., Stilkerich, I., Dietrich, C., Schröder-Preikschat, W.: Demystifying soft-error mitigation by control-flow checking - a new perspective on its effectiveness. ACM Trans. Embed. Comput. Syst. 16(5s), 1–19 (2017)

    Article  Google Scholar 

  26. Srikanth, S., Deng, B., Conte, T.M.: A brief survey of non-residue based computational error correction (2016)

    Google Scholar 

  27. Süßkraut, M., Schmitt, A., Kaienburg, J.: Safe program execution with diversified encoding. In: Proceedings of the 13th Embedded World Conference (2015)

    Google Scholar 

  28. Ulbrich, P.: Ganzheitliche Fehlertoleranz in eingebetteten Softwaresystemen. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, M., Riedel, O., Lechler, A. (2022). Comprehensive Analysis of Software-Based Fault Tolerance with Arithmetic Coding for Performant Encoding of Integer Calculations. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2022. Lecture Notes in Computer Science, vol 13414. Springer, Cham. https://doi.org/10.1007/978-3-031-14835-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14835-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14834-7

  • Online ISBN: 978-3-031-14835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics