Skip to main content

Latent Representation Weights Learning of the Indefinite Length of Views for Conception Diagnosis

  • Chapter
  • First Online:
Multimodal AI in Healthcare

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1060))

  • 748 Accesses

Abstract

Deep learning has great prevalence in various medical diagnosis tasks. Existing methods can tackle the issue of multiviews very well. However, these methods cannot process indefinite lengths of multiviews, especially with a “dimension gap” between them, such as blood flow ultrasound images. In this work, we propose Latent Representation Weight Learning (LRWL) to learn the latent representative weight of each image or view and then integrate the views with the weights and the diagnostic indexes as part of the input data to DL to predict successful conception. This method can describe the role of each view accurately. We perform thorough experiments on a real reproduction dataset to evaluate LRWL. The results show that our proposed method achieves the top performances with higher accuracy and good convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Goel, A., Singh, R., Vatsa, M., & Ratha, N. K. (2020). Dndnet: Reconfiguring CNN for adversarial robustness. In CVPR Workshop on Fair, Data Efficient and Trusted Computer Vision, 2020 (pp. 103–110).

    Google Scholar 

  2. AIMI, S. (2020). A large new cardiac motion video data resource for medical machine learning. https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a.

  3. Angalaeswari, S., Sanjeevikumar, P., Jamuna, K., & Leonowicz, Z. (2020). Hybrid pipso-sqp algorithm for real power loss minimization in radial distribution systems with optimal placement of distributed generation. Sustainability, 12, 5787.

    Google Scholar 

  4. Antonsanti, P. L., Benseghir, T., Jugnon, V., Glaunés, J. (2020). Database annotation with few examples: An atlas-based framework using diffeomorphic registration of 3d trees (pp. 160–170).

    Google Scholar 

  5. Bennin, K. E., Keung, J., Monden, A., Kamei, Y., & Ubayashi, N. (2016). Investigating the effects of balanced training and testing datasets on effort-aware fault prediction models. In: Computer Software & Applications Conference (pp. 154–163)

    Google Scholar 

  6. Cao, B., Zhang, H., Wang, N., Gao, X., & Shen, D. (2020). Auto-gan: Self-supervised collaborative learning for medical image synthesis. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7), 10486–10493.

    Article  Google Scholar 

  7. Chang, Q., Qu, H., Zhang, Y., Sabuncu, M., Chen, C., Zhang, T., et al. (2020). Synthetic learning: Learn from distributed asynchronized discriminator GAN without sharing medical image data (pp. 13853–13863). IEEE.

    Google Scholar 

  8. Chen, Z., Lin, Z., Wang, P., & Ding, M. (2021). Negative-resnet: Noisy ambulatory electrocardiogram signal classification scheme. Neural Computing and Applications, 10, 1–13.

    Google Scholar 

  9. Cinaroglu, I., & Bastanlar, Y. (2021). Training semantic descriptors for image-based localization. In: ECCV 2020 Workshop on Perception for Autonomous Driving.

    Google Scholar 

  10. Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., & Bousseau, A. (2019). Flexible svbrdf capture with a multi-image deep network.

    Google Scholar 

  11. Dwivedi, , Ganesh, V., Shukla, R. C., Jain, M., & Kumar, I. (2020). Colour doppler evaluation of uterine and ovarian blood flow in patients of polycystic ovarian disease and post-treatment changes. Clinical Radiology, 75(10).

    Google Scholar 

  12. Geng, Y., Z H, Zhang, C., & Q H (2021). Uncertainty-aware multi-view representation learning. In: Proceedings of AAAI Conference on Artificial Intelligence (pp. 7545–7553).

    Google Scholar 

  13. Gilboy, K. M., Wu, Y., Wood, B. J., Boctor, E. M., & Taylor, R. H. (2020). Dual-robotic ultrasound system for in vivo prostate tomography. In: International Conference on Medical Image Computing and Computer Assisted Intervention (pp. 161–170)

    Google Scholar 

  14. Guo, Y., Bi, L., Ahn, E., Feng, D., Wang, Q., & Kim, J. (2020). A spatiotemporal volumetric interpolation network for 4d dynamic medical image. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 4725–4734).

    Google Scholar 

  15. Han, Z., Zhang, C., Fu, H., & Zhou, J. T. (2021). Trusted multi-view classification.

    Google Scholar 

  16. He, J., Pan, C., Yang, C., Zhang, M., & Yu, Y. (2020). Learning hybrid representations for automatic 3d vessel centerline extraction. In: International Conference on Medical Image Computing and Computer Assisted Intervention (pp. 24–34).

    Google Scholar 

  17. He, X., Wang, S., Chu, X., Shi, S., Tang, J., Liu, X., et al. (2021). Automated model design and benchmarking of 3d deep learning models for covid-19 detection with chest CT scans. In: AAAI Conference on Artificial Intelligence (pp. 4821–4829)

    Google Scholar 

  18. ISBI. (2021). Grand-challenges-all challenges. https://link.zhihu.com/?target.

  19. Jia, C., Zhao, J., Liu, Q., Ma, Y., & Hu, C. (2020). Analysis of influence of wind speed correlation in transmission congestion based on LHS-Cholesky decomposition. In: 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC).

    Google Scholar 

  20. Kopans, D., & Moore, R. (2021). University of South Florida digital mammography home page. http://www.eng.usf.edu/cvprg/Mammography/Database.html.

  21. Li, Y., Boi, A., Zhang, T., Ji, Y., Harada, T., & Niener, M. (2020). Learning to optimize non-rigid tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 4909–4917).

    Google Scholar 

  22. Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., et al. (2019). A deep learning system for differential diagnosis of skin diseases.

    Google Scholar 

  23. Liu, Y. N. (2019). The augmented lagrange multiplier method for nonconvex regular matrix regression. M.S. diss.: Beijing Jiaotong University.

    Google Scholar 

  24. Manna, S., Bhattacharya, S., & Pal, U. (2021). SSLM: Self-supervised learning for medical diagnosis from MR video. arXiv:2104.10481v1.

  25. OASIS. (2020). Classified skin lesions. https://www.isic-archive.com/.

  26. Parimala, K., & Channappayya, S. (2019). Quality aware generative adversarial networks. In: IEEE Conference on Neural Information Processing Systems.

    Google Scholar 

  27. Peng, C., Lin, W. A., Liao, H., Chellappa, R., & Zhou, S. K. (2020). Saint: Spatially aware interpolation network for medical slice synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 7747–7756).

    Google Scholar 

  28. Schirmer, M., Venkataraman, A., Rekik, I., Kim, M., & Ai, W. C. (2021). Neuropsychiatric disease classification using functional connectomics - results of the connectomics in neuroimaging transfer learning challenge. Medical Image Analysis, 11, 101972.

    Google Scholar 

  29. St Ieler, F., Rabe, F., & Bauer, B. (2021). Towards domain-specific explainable AI: Model interpretation of a skin image classifier using a human approach. In: IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  30. Wang, C. R., Zhang, F., Yu, Y., & Wang, Y. (2020). Br-GAN: Bilateral residual generating adversarial network for mammogram classification.

    Google Scholar 

  31. Wang, W., Yan, S., Mao, L., & Guo, X. (2021). Robust minimum variance beamforming with sidelobe level control using the alternating direction method of multipliers. IEEE Transactions on Aerospace and Electronic Systems, 99, 2514–2518.

    Google Scholar 

  32. Woo, S. W. (2021). Probability and its distribution in statistics. Design of mechanical systems based on statistics.

    Google Scholar 

  33. Xie, X., Chen, J., Li, Y., Shen, L., & Zheng, Y. (2020). Instance-aware self-supervised learning for nuclei segmentation. arXiv:2007.11186.

  34. Yang, H., Zhang, Z., Fan, W., & Xiao, F. (2021). Optimal design for demand responsive connector service considering elastic demand. IEEE Transactions on Intelligent Transportation Systems, PP(99), 1–11.

    Google Scholar 

  35. Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M. H., et al. (2021). Multi-stage progressive image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  36. Zhang, C., Fu, H., Hu, Q., Cao, X., Xie, Y., Tao, D., & Xu, D. (2018). Generalized latent multi-view subspace clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1), 86–99.

    Article  Google Scholar 

  37. Zhang, C., Cui, Y., Han, Z., Zhou, J. T., Fu, H., & Hu, Q. (2020). Deep partial multi-view learning. arXiv:2011.06170.

  38. Zhang, C., Fu, H., Wang, J., Li, W., & Hu, Q. (2020). Tensorized multi-view subspace representation learning. International Journal of Computer Vision, 128(8), 2344–2361.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, C., Fu, H., Wang, J., Li, W., & Hu, Q. (2020). Tensorized multi-view subspace representation learning. International Journal of Computer Vision, 9, 2344–2361.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., & Dalca, A. V. (2020). Data augmentation using learned transformations for one-shot medical image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 8543–8553).

    Google Scholar 

  41. Zheng, H., Zhang, Y., Yang, L., Wang, C., & Chen, D. Z. (2020). An annotation sparsification strategy for 3d medical image segmentation via representative selection and self-training. Proceedings of the AAAI Conference on Artificial Intelligence, 34(4), 6925–6932.

    Article  Google Scholar 

  42. Zheng, J., Liu, X. Y., & Wang, X. (2020). Single image cloud removal using u-net and generative adversarial networks. IEEE Transactions on Geoscience and Remote Sensing, 99, 1–15.

    Article  Google Scholar 

  43. Zhu, L., & Yang, Y. (2020). Actbert: Learning global-local video-text representations. In: IEEE Conference on Computer Vision and Pattern Recognition (pp. 8743–8752).

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support in part by the Shandong Natural Science Foundation (ZR2021M F068, ZR2021MF015, ZR2021MF107, ZR2021QF134), Shandong Computer Society Provincial Key Laboratory Joint Open Fund (SKLCN-2020-06), Wealth Management Characteristic Construction Project of Shandong Technology and Business University (2019ZBKY032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Sun, M., Yu, Y., Zhao, Y., Xiang, Z., An, Z. (2023). Latent Representation Weights Learning of the Indefinite Length of Views for Conception Diagnosis. In: Shaban-Nejad, A., Michalowski, M., Bianco, S. (eds) Multimodal AI in Healthcare. Studies in Computational Intelligence, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-031-14771-5_8

Download citation

Publish with us

Policies and ethics