Skip to main content

MRO Inventory Demand Forecast Using Support Vector Machine – A Case Study

  • Conference paper
  • First Online:
Industrial Engineering and Operations Management (IJCIEOM 2022)

Abstract

Today’s world is living in the age of digital transformation, the so-called Industry 4.0, in which technological advances have revolutionized the decision-making process in supply chain management. In this domain, inventory management can represent 50% of all organizational costs, and still a challenging task to keep the trade-off between maintaining inventory levels as low as possible, meeting clients’ demands, and maintaining satisfactory service levels. Forecasting the MRO inventory demand is even a more difficult task. To address this problem, machine learning (ML) applications, which deal well with nonlinear data, can predict irregular and intermittent demand with better accuracy than traditional approaches. This study employed the Support Vector Machine model to predict maintenance parts demand in a railroad logistic operator case study. This technique can deal with the nonlinear data encompassed by demand variations, avoid overfitting, and produce very accurate classifiers. Results indicated a considerable improvement in the demand forecast performance of the selected SKUs. This model can enhance the reliability of the purchasing and stock maintenance process and generate financial gains by reducing the need for large volumes of safety stock and greater assertiveness in meeting internal demands. It also contributes by showing a real case with an ML approach to predict inventory demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machado, E., Scavarda, L.F., Caiado, R.G.G., Thomé, A.M.T.: Barriers and enablers for the integration of industry 4.0 and sustainability in supply chains of MSMEs. Sustainability. 13, 11664 (2021)

    Article  Google Scholar 

  2. Caiado, R.G.G., Scavarda, L.F., Azevedo, B.D., Nascimento, D.L.d.M., Quelhas, O.L.G.: Challenges and benefits of sustainable industry 4.0 for operations and supply chain management—a framework headed toward the 2030 agenda. Sustainability. 14, 1–26 (2022). https://doi.org/10.3390/su14020830

    Article  Google Scholar 

  3. Melnyk, S.A., Lummus, R.R., Vokurka, R.J., Burns, L.J., Sandor, J.: Mapping the future of supply chain management: a Delphi study. Int. J. Prod. Res. 47, 4629–4653 (2009). https://doi.org/10.1080/00207540802014700

    Article  Google Scholar 

  4. Lancioni, R.A.: New developments in supply chain management for the millennium. Ind. Mark. Manag. 29, 1–6 (2000). https://doi.org/10.1016/S0019-8501(99)00106-6

    Article  Google Scholar 

  5. Sustrova, T.: An artificial neural network model for a wholesale company’s order-cycle management. Int. J. Eng. Bus. Manag. 8, 1–6 (2016). https://doi.org/10.5772/63727

    Article  Google Scholar 

  6. Sitorus, F., Cilliers, J.J., Brito-Parada, P.R.: Multi-criteria decision making for the choice problem in mining and mineral processing: applications and trends. Expert Syst. Appl. 121, 393–417 (2019). https://doi.org/10.1016/J.ESWA.2018.12.001

    Article  Google Scholar 

  7. Priore, P., Ponte, B., Rosillo, R., de la Fuente, D.: Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. Int. J. Prod. Res. 57, 3663–3677 (2019). https://doi.org/10.1080/00207543.2018.1552369

    Article  Google Scholar 

  8. Kartal, H., Oztekin, A., Gunasekaran, A., Cebi, F.: An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Comput. Ind. Eng. 101, 599–613 (2016). https://doi.org/10.1016/j.cie.2016.06.004

    Article  Google Scholar 

  9. Gutierrez, R.S., Solis, A.O., Mukhopadhyay, S.: Lumpy demand forecasting using neural networks. Int. J. Prod. Econ. 111, 409–420 (2008). https://doi.org/10.1016/j.ijpe.2007.01.007

    Article  Google Scholar 

  10. Jaipuria, S., Mahapatra, S.S.: A study on behaviour of bullwhip effect in (R, S) inventory control system considering DWT-MGGP demand forecasting model. J. Model. Manag. 14, 385–407 (2019). https://doi.org/10.1108/JM2-04-2018-0053

    Article  Google Scholar 

  11. Kück, M., Freitag, M.: Forecasting of customer demands for production planning by local k-nearest neighbor models. Int. J. Prod. Econ. 231, 107837 (2021). https://doi.org/10.1016/j.ijpe.2020.107837

    Article  Google Scholar 

  12. Abolghasemi, M., Beh, E., Tarr, G., Gerlach, R.: Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion. Comput. Ind. Eng. 142, 106380 (2020). https://doi.org/10.1016/j.cie.2020.106380

    Article  Google Scholar 

  13. Karamizadeh, S., Abdullah, S.M., Halimi, M., Shayan, J., Rajabi, M.J.: Advantage and drawback of support vector machine functionality. I4CT 2014: 1st Int. Conf. Comput. Commun. Control Technol. Proc. 63–65 (2014). https://doi.org/10.1109/I4CT.2014.6914146

  14. Placido dos Santos, F.S., Oliveira, F.: An enhanced L-shaped method for optimizing periodic-review inventory control problems modeled via two-stage stochastic programming. Eur. J. Oper. Res. 275, 677–693 (2019). https://doi.org/10.1016/j.ejor.2018.11.053

    Article  MathSciNet  MATH  Google Scholar 

  15. Babiloni, E., Guijarro, E.: Fill rate: from its definition to its calculation for the continuous (s, Q) inventory system with discrete demands and lost sales. Cent. Eur. J. Oper. Res. 28, 35–43 (2020). https://doi.org/10.1007/s10100-018-0546-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Scavarda, L.F., Schaffer, J., Scavarda, A.J., da Cunha Reis, A., Schleich, H.: Product variety: an auto industry analysis and a benchmarking study. Benchmarking. 16, 387–400 (2009). https://doi.org/10.1108/14635770910961399

    Article  Google Scholar 

  17. Soylu, B., Akyol, B.: Multi-criteria inventory classification with reference items. Comput. Ind. Eng. 69, 12–20 (2014). https://doi.org/10.1016/j.cie.2013.12.011

    Article  Google Scholar 

  18. Shamsaddini, R., Vesal, S.M., Nawaser, K.: A new model for inventory items classification through integration of ABC-FUZZY and fuzzy analytic hierarchy process. Int. J. Ind. Syst. Eng. 19, 239–261 (2015)

    Google Scholar 

  19. Chen, J., Gusikhin, O., Finkenstaedt, W., Liu, Y.N.: Maintenance, repair, and operations parts inventory management in the era of industry 4.0. IFAC-PapersOnLine. 52, 171–176 (2019). https://doi.org/10.1016/j.ifacol.2019.11.171

    Article  Google Scholar 

  20. Bailey, G.J., Helms, M.M.: MRO inventory reduction – challenges and management: a case study of the Tennessee Valley Authority. Prod. Plan. Control. 18, 261–270 (2007). https://doi.org/10.1080/09537280601127351

    Article  Google Scholar 

  21. Silver, E.A.: Operations research in inventory management: a review and critique. Oper. Res. 29, 628–645 (1981). https://doi.org/10.1287/opre.29.4.628

    Article  MathSciNet  Google Scholar 

  22. Kot, S., Grondys, K., Szopa, R.: Theory of inventory management based on demand forecasting. Pol. J. Manag. Stud. 3, 148–156 (2011)

    Google Scholar 

  23. Aamer, A.M., Yani, L.P.E., Priyatna, I.M.A.: Data analytics in the supply chain management: review of machine learning applications in demand forecasting. Oper. Supply Chain Manag. 14, 1–13 (2021). https://doi.org/10.31387/oscm0440281

    Article  Google Scholar 

  24. Spiliotis, E., Makridakis, S., Semenoglou, A.-A., Assimakopoulos, V.: Comparison of statistical and machine learning methods for daily SKU demand forecasting. Oper. Res. 22, 3037–3061 (2020). https://doi.org/10.1007/s12351-020-00605-2

    Article  Google Scholar 

  25. Carbonneau, R., Laframboise, K., Vahidov, R.: Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res. 184, 1140–1154 (2008). https://doi.org/10.1016/j.ejor.2006.12.004

    Article  MATH  Google Scholar 

  26. Tanizaki, T., Hoshino, T., Shimmura, T., Takenaka, T.: Demand forecasting in restaurants using machine learning and statistical analysis. Procedia CIRP. 79, 679–683 (2019). https://doi.org/10.1016/j.procir.2019.02.042

    Article  Google Scholar 

  27. Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Log. Res. Appl. 13, 13–39 (2010). https://doi.org/10.1080/13675560902736537

    Article  Google Scholar 

  28. Punia, S., Nikolopoulos, K., Singh, S.P., Madaan, J.K., Litsiou, K.: Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail. Int. J. Prod. Res. 58(1), 1–16 (2020). https://doi.org/10.1080/00207543.2020.1735666

    Article  Google Scholar 

  29. Dombi, J., Jónás, T., Tóth, Z.E.: Modeling and long-term forecasting demand in spare parts logistics businesses. Int. J. Prod. Econ. 201, 1–17 (2018). https://doi.org/10.1016/j.ijpe.2018.04.015

    Article  Google Scholar 

  30. Kourentzes, N.: Intermittent demand forecasts with neural networks. Int. J. Prod. Econ. 143, 198–206 (2013). https://doi.org/10.1016/j.ijpe.2013.01.009

    Article  Google Scholar 

  31. Aktepe, A., Yanık, E., Ersöz, S.: Demand forecasting application with regression and artificial intelligence methods in a construction machinery company. J. Intell. Manuf. 32, 1587–1604 (2021). https://doi.org/10.1007/s10845-021-01737-8

    Article  Google Scholar 

  32. Yin, R.k.: Case study research and applications. SAGE (2018)

    Google Scholar 

  33. Voss, C., Tsikriktsis, N., Frohlich, M.: Case research in operations management. Int. J. Oper. Prod. Manag. 22, 195–219 (2002). https://doi.org/10.1108/01443570210414329

    Article  Google Scholar 

  34. Carvalho, A.N., Scavarda, L.F., Lustosa, L.J.: Implementing finite capacity production scheduling: lessons from a practical case. Int. J. Prod. Res. 52, 1215–1230 (2014). https://doi.org/10.1080/00207543.2013.848484

    Article  Google Scholar 

  35. Caiado, R.G.G., Lima, G.B.A., Gavião, L., Quelhas, O.L.G., Paschoalino, F.F.: Sustainability analysis in electrical energy companies by similarity technique to ideal solution. IEEE Lat. Am. Trans. 15, 675–681 (2017). https://doi.org/10.1109/TLA.2017.7896394

    Article  Google Scholar 

  36. Nascimento, D., Caiado, R., Tortorella, G., Ivson, P., Meiriño, M.: Digital Obeya Room: exploring the synergies between BIM and lean for visual construction management. Innov. Infrastruct. Solut. 3, 1 (2018)

    Article  Google Scholar 

  37. Muniz, M.V.P., Lima, G.B.A., Caiado, R.G.G., Quelhas, O.L.G.: Bow tie to improve risk management of natural gas pipelines. Process Saf. Prog. 37, 169–175 (2018). https://doi.org/10.1002/prs.11901

    Article  Google Scholar 

  38. Caiado, R.G.G., Quelhas, O.L.G., Nascimento, D.L.M., Anholon, R., Leal Filho, W.: Measurement of sustainability performance in Brazilian organizations. Int. J. Sustain. Dev. World Ecol. 25, 312–326 (2018). https://doi.org/10.1080/13504509.2017.1406875

    Article  Google Scholar 

  39. Russell, S., Norvig, P.: Artificial intelligence a modern approach, 4th edn. Pearson (2021)

    MATH  Google Scholar 

  40. Wu, Q.: The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine. Expert Syst. Appl. 37, 1776–1783 (2010). https://doi.org/10.1016/j.eswa.2009.07.054

    Article  Google Scholar 

  41. Villegas, M.A., Pedregal, D.J., Trapero, J.R.: A support vector machine for model selection in demand forecasting applications. Comput. Ind. Eng. 121, 1–7 (2018). https://doi.org/10.1016/j.cie.2018.04.042

    Article  Google Scholar 

  42. Salcedo-Sanz, S., Rojo-Álvarez, J.L., Martínez-Ramón, M., Camps-Valls, G.: Support vector machines in engineering: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4, 234–267 (2014). https://doi.org/10.1002/widm.1125

    Article  Google Scholar 

  43. Arunraj, N.S., Ahrens, D.: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. Int. J. Prod. Econ. 170, 321–335 (2015). https://doi.org/10.1016/j.ijpe.2015.09.039

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil – CAPES [Finance Code 001] & [Grant Number 88881.198822/2018-01]; Brazilian National Council for Scientific and Technological Development – CNPq [311757/2018-9]; Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro – FAPERJ [Grant number E-26/201.363/2021; E26/211.298/2021].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Henrique de Paula Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Paula Vidal, G.H., Caiado , R.G.G., Scavarda, L.F., Santos, R.S. (2022). MRO Inventory Demand Forecast Using Support Vector Machine – A Case Study. In: López Sánchez, V.M., Mendonça Freires, F.G., Gonçalves dos Reis, J.C., Costa Martins das Dores, J.M. (eds) Industrial Engineering and Operations Management. IJCIEOM 2022. Springer Proceedings in Mathematics & Statistics, vol 400. Springer, Cham. https://doi.org/10.1007/978-3-031-14763-0_18

Download citation

Publish with us

Policies and ethics