Skip to main content

Genetics of Inflammatory Bowel Diseases

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

The inflammatory bowel diseases, Crohn disease and ulcerative colitis, are caused by the immune system’s dysregulated response to gut flora and environmental exposures in genetically susceptible individuals. The last 20 years have shown great progress in understanding the basis of this genetic susceptibility. The first efforts involved epidemiology and family studies to assess the hereditary contribution to IBD. Later, studies utilizing sib-pair linkage analysis revealed one of the first replicable associations in IBD, indeed, in complex mode-of-inheritance diseases generally, the NOD2 polymorphisms. In 2006, the introduction of genome-wide association studies (GWAS) brought a new model for identifying genomic loci conferring a more modest risk of IBD. Through the aggregation of several GWAS datasets in meta-analysis, at least 240 loci have been identified. Next-generation sequencing (NGS) technology was introduced in the last decade and successfully identified multiple new risk variants, in previously identified GWAS genes. Sequencing has also been successful in identifying monogenic defects in very-early-onset (VEO) IBD cases as well as in some other specific pediatric populations with IBD or its genetic mimics. In this chapter, we will review some genetic epidemiology, specific genes identified, new approaches to identifying loci, and genotype-phenotype correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hugot JP, Laurent-Puig P, Gower-Rousseau C, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature. 1996;379:821–3.

    CAS  PubMed  Google Scholar 

  2. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    CAS  PubMed  Google Scholar 

  3. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    CAS  PubMed  Google Scholar 

  4. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Duerr RH. The genetics of inflammatory bowel disease. Gastroenterol Clin N Am. 2002;31:63–76.

    Google Scholar 

  6. Karban A, Eliakim R, Brant SR. Genetics of inflammatory bowel disease. Isr Med Assoc J. 2002;4:798–802.

    CAS  PubMed  Google Scholar 

  7. Afzali A, Cross RK. Racial and ethnic minorities with inflammatory bowel disease in the United States: a systematic review of disease characteristics and differences. Inflamm Bowel Dis. 2016;22:2023–40.

    PubMed  Google Scholar 

  8. Basu D, Lopez I, Kulkarni A, Sellin JH. Impact of race and ethnicity on inflammatory bowel disease. Am J Gastroenterol. 2005;100:2254–61.

    PubMed  Google Scholar 

  9. Kanaan Z, Ahmad S, Roberts H, et al. Crohn’s disease in Caucasians and African Americans, as defined by clinical predictors and single nucleotide polymorphisms. J Natl Med Assoc. 2012;104:420–7.

    PubMed  Google Scholar 

  10. Ghazi LJ, Lydecker AD, Patil SA, Rustgi A, Cross RK, Flasar MH. Racial differences in disease activity and quality of life in patients with Crohn’s disease. Dig Dis Sci. 2014;59:2508–13.

    PubMed  Google Scholar 

  11. Weinstein TA, Levine M, Pettei MJ, Gold DM, Kessler BH, Levine JJ. Age and family history at presentation of pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2003;37:609–13.

    PubMed  Google Scholar 

  12. Laharie D, Debeugny S, Peeters M, et al. Inflammatory bowel disease in spouses and their offspring. Gastroenterology. 2001;120:816–9.

    CAS  PubMed  Google Scholar 

  13. Orholm M, Fonager K, Sorensen HT. Risk of ulcerative colitis and Crohn’s disease among offspring of patients with chronic inflammatory bowel disease. Am J Gastroenterol. 1999;94:3236–8.

    CAS  PubMed  Google Scholar 

  14. Levine AP, Pontikos N, Schiff ER, et al. Genetic complexity of Crohn’s disease in two large Ashkenazi Jewish families. Gastroenterology. 2016;151:698–709.

    PubMed  Google Scholar 

  15. Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol. 2000;35:1075–81.

    CAS  PubMed  Google Scholar 

  16. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ. 1996;312:95–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988;29:990–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brant S. Update on the heritability of inflammatory bowel disease: the importance of twin studies. Inflamm Bowel Dis. 2011;17:1–5.

    PubMed  Google Scholar 

  19. Lesage S, Zouali H, Cezard JP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70:845–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease. Expert Opin Ther Targets. 2017;21:1123–39.

    PubMed  Google Scholar 

  21. Li J, Moran T, Swanson E, et al. Regulation of IL-8 and IL-1beta expression in Crohn’s disease associated NOD2/CARD15 mutations. Hum Mol Genet. 2004;13:1715–25.

    CAS  PubMed  Google Scholar 

  22. Eckmann L, Karin M. NOD2 and Crohn’s disease: loss or gain of function? Immunity. 2005;22:661–7.

    CAS  PubMed  Google Scholar 

  23. Umiker B, Lee HH, Cope J, et al. The NLRP3 inflammasome mediates DSS-induced intestinal inflammation in Nod2 knockout mice. Innate Immun. 2019;25:132–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol. 2004;99:2393–404.

    CAS  PubMed  Google Scholar 

  25. Cummings JR, Jewell DP. Clinical implications of inflammatory bowel disease genetics on phenotype. Inflamm Bowel Dis. 2005;11:56–61.

    PubMed  Google Scholar 

  26. Kugathasan S, Loizides A, Babusukumar U, et al. Comparative phenotypic and CARD15 mutational analysis among African American, Hispanic, and White children with Crohn’s disease. Inflamm Bowel Dis. 2005;11:631–8.

    PubMed  Google Scholar 

  27. Dumay A, Gergaud O, Roy M, Hugot JP. Is Crohn’s disease the price to pay today for having survived the black death? J Crohns Colitis. 2019;13:1318–22.

    PubMed  Google Scholar 

  28. Weiss B, Shamir R, Bujanover Y, et al. NOD2/CARD15 mutation analysis and genotype-phenotype correlation in Jewish pediatric patients compared with adults with Crohn’s disease. J Pediatr. 2004;145:208–12.

    CAS  PubMed  Google Scholar 

  29. Ahmad T, Marshall S, Jewell D. Genotype-based phenotyping heralds a new taxonomy for inflammatory bowel disease. Curr Opin Gastroenterol. 2003;19:327–35.

    CAS  PubMed  Google Scholar 

  30. van Heel DA, Fisher SA, Kirby A, et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet. 2004;13:763–70.

    PubMed  Google Scholar 

  31. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta- analysis. Gut. 1999;45:395–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Silverberg MS, Mirea L, Bull SB, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9:1–9.

    PubMed  Google Scholar 

  33. Orchard TR, Thiyagaraja S, Welsh KI, Wordsworth BP, Hill Gaston JS, Jewell DP. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology. 2000;118:274–8.

    CAS  PubMed  Google Scholar 

  34. Yap LM, Ahmad T, Jewell DP. The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract Res. 2004;18:577–96.

    CAS  Google Scholar 

  35. Goyette P, Boucher G, Mallon D, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47:172–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299:1335–44.

    CAS  PubMed  Google Scholar 

  37. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    CAS  PubMed  Google Scholar 

  38. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.

    CAS  PubMed  Google Scholar 

  40. Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203:2473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kullberg MC, Jankovic D, Feng CG, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. The Journal of experimental medicine. 2006;203:2485–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Uhlig HH, McKenzie BS, Hue S, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25:309–18.

    CAS  PubMed  Google Scholar 

  43. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    CAS  PubMed  Google Scholar 

  45. Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375:1946–60.

    CAS  PubMed  Google Scholar 

  46. Sands BE, Sandborn WJ, Panaccione R, et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2019;381:1201–14.

    CAS  PubMed  Google Scholar 

  47. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.

    CAS  PubMed  Google Scholar 

  48. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet. 2018;102:717–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. International HapMap Consortium, Frazer KA, Ballinger DG, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Google Scholar 

  51. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17:R122–8.

    PubMed  PubMed Central  Google Scholar 

  52. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Harrison DA. The Jak/STAT pathway. Cold Spring Harb Perspect Biol. 2012;4 https://doi.org/10.1101/cshperspect.a011205.

  55. Nakazawa A, Dotan I, Brimnes J, et al. The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology. 2004;126:1347–57.

    CAS  PubMed  Google Scholar 

  56. Ito T, Yang M, Wang YH, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuji S, Uehori J, Matsumoto M, et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem. 2001;276:23456–63.

    CAS  PubMed  Google Scholar 

  58. Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab. 2014;25:348–55.

    CAS  PubMed  Google Scholar 

  59. Lu L, Wang J, Zhang F, et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol. 2010;184:4295–306.

    CAS  PubMed  Google Scholar 

  60. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Turner CA Jr, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77:297–306.

    CAS  PubMed  Google Scholar 

  62. Steinberg MW, Turovskaya O, Shaikh RB, et al. A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med. 2008;205:1463–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou Z, Pollok KE, Kim KK, Kim YJ, Kwon BS. Functional analysis of T-cell antigen 4-1BB in activated intestinal intra-epithelial T lymphocytes. Immunol Lett. 1994;41:177–84.

    CAS  PubMed  Google Scholar 

  64. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut. 1989;30:835–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Williams EJ, Haque S, Banks C, Johnson P, Sarsfield P, Sheron N. Distribution of the interleukin-8 receptors, CXCR1 and CXCR2, in inflamed gut tissue. J Pathol. 2000;192:533–9.

    CAS  PubMed  Google Scholar 

  66. Henderson P. Genetics of childhood-onset inflammatory bowel disease. Inflamm Bowel Dis. 2010;17:346–61.

    Google Scholar 

  67. Imielinski M, Baldassano RN, Griffiths A, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kugathasan S, Baldassano RN, Bradfield JP, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40:1211–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dan N, Kanai T, Totsuka T, et al. Ameliorating effect of anti-Fas ligand MAb on wasting disease in murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G754–60.

    CAS  PubMed  Google Scholar 

  70. Jungbeck M, Daller B, Federhofer J, et al. Neutralization of LIGHT ameliorates acute dextran sodium sulphate-induced intestinal inflammation. Immunology. 2009;128:451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Meylan F, Song YJ, Fuss I, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4:172–85.

    CAS  PubMed  Google Scholar 

  72. Wang J, Anders RA, Wang Y, et al. The critical role of LIGHT in promoting intestinal inflammation and Crohn’s disease. J Immunol. 2005;174:8173–82.

    CAS  PubMed  Google Scholar 

  73. Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417–43.

    CAS  PubMed  Google Scholar 

  74. de Lange KM, Barrett JC. Understanding inflammatory bowel disease via immunogenetics. J Autoimmun. 2015;64:91–100.

    PubMed  Google Scholar 

  75. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661–73.

    CAS  PubMed  Google Scholar 

  76. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wellcome Trust Case Control Consortium, Maller JB, McVean G, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet. 2012;44:1294–301.

    Google Scholar 

  78. Huang H, Fang M, Jostins L, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547:173–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamazaki K, Takazoe M, Tanaka T, Kazumori T, Nakamura Y. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet. 2002;47:469–72.

    CAS  PubMed  Google Scholar 

  80. Yamazaki K, McGovern D, Ragoussis J, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14:3499–506.

    CAS  PubMed  Google Scholar 

  81. Brant SR, Okou DT, Simpson CL, et al. Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. Gastroenterology. 2017;152(206-17):e2.

    Google Scholar 

  82. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62:1795–805.

    CAS  PubMed  Google Scholar 

  84. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kelsen JR, Dawany N, Moran CJ, et al. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. Gastroenterology. 2015;149:1415–24.

    CAS  PubMed  Google Scholar 

  86. Worthey EA, Mayer AN, Syverson GD, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13:255–62.

    PubMed  Google Scholar 

  87. Crowley E, Warner N, Pan J, et al. Prevalence and clinical features of inflammatory bowel diseases associated with monogenic variants, identified by whole-exome sequencing in 1000 children at a single center. Gastroenterology. 2020;158(8):2208–20.

    CAS  PubMed  Google Scholar 

  88. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet. 2001;69:124–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zuk O, Schaffner SF, Samocha K, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111:E455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivas MA, Beaudoin M, Gardet A, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43:1066–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Beaudoin M, Goyette P, Boucher G, et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet. 2013;9:e1003723.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11:773–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. de Lange KM, Moutsianas L, Lee JC, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61.

    PubMed  PubMed Central  Google Scholar 

  94. Luo Y, de Lange KM, Jostins L, et al. Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet. 2017;49:186–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kang J, Kugathasan S, Georges M, Zhao H, Cho JH. Improved risk prediction for Crohn’s disease with a multi-locus approach. Hum Mol Genet. 2011;20:2435–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wei Z, Wang W, Bradfield J, et al. Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. Am J Hum Genet. 2013;92:1008–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Burke KE, Khalili H, Garber JJ, et al. Genetic markers predict primary nonresponse and durable response to anti-tumor necrosis factor therapy in ulcerative colitis. Inflamm Bowel Dis. 2018;24:1840–8.

    PubMed  PubMed Central  Google Scholar 

  98. Chen GB, Lee SH, Montgomery GW, et al. Performance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score method. BMC Med Genet. 2017;18:94.

    PubMed  PubMed Central  Google Scholar 

  99. Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.

    PubMed  PubMed Central  Google Scholar 

  100. Li YR, Li J, Zhao SD, et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med. 2015;21:1018–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li YR, Zhao SD, Li J, et al. Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nat Commun. 2015;6:8442.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Drs. Judy H. Cho, Nancy McGreal, Zhi Wei, and Steve Baldassano, who helped with writing of earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakon Hakonarson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardinale, C.J., Hakonarson, H. (2023). Genetics of Inflammatory Bowel Diseases. In: Mamula, P., Kelsen, J.R., Grossman, A.B., Baldassano, R.N., Markowitz, J.E. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-14744-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14744-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14743-2

  • Online ISBN: 978-3-031-14744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics