Skip to main content

Cdc37 as a Co-chaperone to Hsp90

  • Chapter
  • First Online:
The Networking of Chaperones by Co-Chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 101))

Abstract

The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Analysis of the structure of Hsp90-Cdc37-kinase complexes demonstrates the way in which Cdc37 interacts with and controls the folding of a large proportion of intracellular protein kinases. This co-chaperone thus stands at the hub of a multitude of intracellular signaling networks. Indeed, the influence of Cdc37 reaches beyond the housekeeping pathways of protein folding into the regulation of a wide range of cellular processes. This co-chaperone has attracted attention as a potential intermediate in carcinogenesis. Cdc37 is an attractive potential target in cancer due to (1) high expression in a number of tumor types and (2) control of multiple signaling pathways. These properties indicate (3) a potential for selectivity due to its elevated expression in malignant cells and (4) robustness, as the co-chaperone may control multiple growth signaling pathways and thus be less prone to evolution of resistance than less versatile oncoproteins. Cdc37 may also be involved in other aspects of pathophysiology and has been shown to be secreted in exosomes. Protein aggregation disorders have been linked to age-related declines in molecular chaperones and co-chaperones. Cdc37 also appears to be a potential agent in longevity due to its links to protein folding and autophagy, and it will be informative to study the role of Cdc37 maintenance/decline in aging organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    Article  Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in drosophilia by heat shock. Cell 17:241–254

    Article  CAS  Google Scholar 

  • Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D, Blair LJ (2018) Hsp90 Heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease. Int J Mol Sci 20(1):79

    Article  Google Scholar 

  • Bendell JC, Jones SF, Hart L, Pant S, Moyhuddin A, Lane CM et al (2015) A phase I study of the Hsp90 inhibitor AUY922 plus Capecitabine for the treatment of patients with advanced solid tumors. Cancer Investig 33:477–482

    Article  CAS  Google Scholar 

  • Bitting RL, Armstrong AJ (2013) Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer 20:R83–R99

    Article  CAS  Google Scholar 

  • Calderwood SK (2013) Molecular cochaperones: tumor growth and cancer treatment. Scientifica (Cairo) 2013:217513

    Google Scholar 

  • Calderwood SK (2015) Cdc37 as a co-chaperone to Hsp90. Subcell Biochem 78:103–112

    Article  CAS  Google Scholar 

  • Calderwood SK, Gong J (2016) Heat shock proteins promote cancer: it's a protection racket. Trends Biochem Sci 41:311–323

    Article  CAS  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  CAS  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology 55:550–558

    Article  CAS  Google Scholar 

  • Caplan AJ, Ma'ayan A, Willis IM (2007) Multiple kinases and system robustness: a link between Cdc37 and genome integrity. Cell Cycle 6:3145–3147

    Article  CAS  Google Scholar 

  • Chang HC, Newmyer SL, Hull MJ, Ebersold M, Schmid SL, Mellman I (2002) Hsc70 is required for endocytosis and clathrin function in drosophila. J Cell Biol 159:477–487

    Article  CAS  Google Scholar 

  • Chen S, Sullivan WP, Toft DO, Smith DF (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3:118–129

    Article  CAS  Google Scholar 

  • Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    Article  CAS  Google Scholar 

  • Conde R, Xavier J, McLoughlin C, Chinkers M, Ovsenek N (2005) Protein phosphatase 5 is a negative modulator of heat shock factor 1. J Biol Chem 280:28989–28996

    Article  CAS  Google Scholar 

  • Cox MB, Riggs DL, Hessling M, Schumacher F, Buchner J, Smith DF (2007) FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity. Mol Endocrinol 21:2956–2967

    Article  CAS  Google Scholar 

  • da Rocha DS, Friedlos F, Light Y, Springer C, Workman P, Marais R (2005) Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 65:10686–10691

    Article  Google Scholar 

  • D'Annessa I, Hurwitz N, Pirota V, Beretta GL, Tinelli S, Woodford M et al (2020) Design of disruptors of the Hsp90-Cdc37 interface. Molecules 25(2):360

    Article  CAS  Google Scholar 

  • Dey B, Lightbody JJ, Boschelli F (1996) CDC37 is required for p60v-src activity in yeast. Mol Biol Cell 7:1405–1417

    Article  CAS  Google Scholar 

  • Eckl JM, Rutz DA, Haslbeck V, Zierer BK, Reinstein J, Richter K (2013) Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites. J Biol Chem 288:16032–16042

    Article  CAS  Google Scholar 

  • Eckl JM, Scherr MJ, Freiburger L, Daake MA, Sattler M, Richter K (2015) Hsp90.Cdc37 complexes with protein kinases form cooperatively with multiple distinct interaction sites. J Biol Chem 290:30843–30854

    Article  CAS  Google Scholar 

  • Eguchi T, Prince T, Wegiel B, Calderwood SK (2015) Role and regulation of myeloid zinc finger protein 1 in cancer. J Cell Biochem 116:2146–2154

    Article  CAS  Google Scholar 

  • Eguchi T, Prince TL, Tran MT, Sogawa C, Lang BJ, Calderwood SK (2019) MZF1 and SCAND1 reciprocally regulate CDC37 gene expression in prostate cancer. Cancers (Basel) 11(6):792

    Article  CAS  Google Scholar 

  • Eguchi T, Sogawa C, Ono K, Matsumoto M, Tran MT, Okusha Y et al (2020) Cell stress induced stressome release including damaged membrane vesicles and extracellular HSP90 by prostate cancer cells. Cells 9(3):755

    Article  CAS  Google Scholar 

  • Ellis RJ (2007) Protein misassembly: macromolecular crowding and molecular chaperones. Adv Exp Med Biol 594:1–13

    Article  Google Scholar 

  • Erazo T, Moreno A, Ruiz-Babot G, Rodriguez-Asiain A, Morrice NA, Espadamala J et al (2013) Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex. Mol Cell Biol 33:1671–1686

    Article  CAS  Google Scholar 

  • Fliss AE, Fang Y, Boschelli F, Caplan AJ (1997) Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol Biol Cell 8:2501–2509

    Article  CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11:4767–4778

    Article  CAS  Google Scholar 

  • Gaude H, Aznar N, Delay A, Bres A, Buchet-Poyau K, Caillat C et al (2012) Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Oncogene 31:1582–1591

    Article  CAS  Google Scholar 

  • Gerber MR, Farrell A, Deshaies RJ, Herskowitz I, Morgan DO (1995) Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc Natl Acad Sci U S A 92:4651–4655

    Article  CAS  Google Scholar 

  • Giannini A, Bijlmakers MJ (2004) Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Mol Cell Biol 24:5667–5676

    Article  CAS  Google Scholar 

  • Gracia L, Lora G, Blair LJ, Jinwal UK (2019) Therapeutic potential of the Hsp90/Cdc37 interaction in neurodegenerative diseases. Front Neurosci 13:1263

    Article  Google Scholar 

  • Gray PJ Jr, Stevenson MA, Calderwood SK (2007) Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res 67:11942–11950

    Article  CAS  Google Scholar 

  • Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK (2008) Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8:491–495

    Article  CAS  Google Scholar 

  • Guan SP, Seet RCS, Kennedy BK (2020) Does eNOS derived nitric oxide protect the young from severe COVID-19 complications? Ageing Res Rev 64:101201

    Article  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  CAS  Google Scholar 

  • Harris MB, Bartoli M, Sood SG, Matts RL, Venema RC (2006) Direct interaction of the cell division cycle 37 homolog inhibits endothelial nitric oxide synthase activity. Circ Res 98:335–341

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    Article  CAS  Google Scholar 

  • Huang W, Ye M, Zhang LR, Wu QD, Zhang M, Xu JH et al (2014) FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer 13:150

    Article  Google Scholar 

  • Jinwal UK, Abisambra JF, Zhang J, Dharia S, O'Leary JC, Patel T et al (2012) Cdc37/Hsp90 protein complex disruption triggers an autophagic clearance cascade for TDP-43 protein. J Biol Chem 287:24814–24820

    Article  CAS  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  Google Scholar 

  • Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K et al (2011) Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 43:572–585

    Article  CAS  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  Google Scholar 

  • Kamal A, Boehm MF, Burrows FJ (2004) Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 10:283–290

    Article  CAS  Google Scholar 

  • Karnitz LM, Felts SJ (2007) Cdc37 regulation of the kinome: when to hold 'em and when to fold 'em. Science’s STKE 2007:pe22

    Google Scholar 

  • Keramisanou D, Aboalroub A, Zhang Z, Liu W, Marshall D, Diviney A et al (2016) Molecular mechanism of protein kinase recognition and sorting by the Hsp90 Kinome-specific cochaperone Cdc37. Mol Cell 62:260–271

    Article  CAS  Google Scholar 

  • Kuravi S, Parrott E, Mudduluru G, Cheng J, Ganguly S, Saunthararajah Y et al (2019) CDC37 as a novel target for the treatment of NPM1-ALK expressing anaplastic large cell lymphomas. Blood Cancer J 9:14

    Article  Google Scholar 

  • Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254

    Article  Google Scholar 

  • Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK (2021) The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 95(6):1943–1970

    Article  CAS  Google Scholar 

  • Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA (2003) Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem 278:5292–5299

    Article  CAS  Google Scholar 

  • Li R, Yuan F, Fu W, Zhang L, Zhang N, Wang Y et al (2017) Serine/threonine kinase Unc-51-like Kinase-1 (Ulk1) phosphorylates the co-chaperone cell division cycle protein 37 (Cdc37) and thereby disrupts the stability of Cdc37 client proteins. J Biol Chem 292:2830–2841

    Article  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  Google Scholar 

  • MacLean M, Picard D (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8:114–119

    Article  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  Google Scholar 

  • Miyajima N, Tsutsumi S, Sourbier C, Beebe K, Mollapour M, Rivas C et al (2013) The HSP90 inhibitor ganetespib synergizes with the MET kinase inhibitor crizotinib in both crizotinib-sensitive and -resistant MET-driven tumor models. Cancer Res 73:7022–7033

    Article  CAS  Google Scholar 

  • Murshid A, Prince TL, Lang B, Calderwood SK (2018) Role of heat shock factors in stress-induced transcription. Methods Mol Biol 1709:23–34

    Article  CAS  Google Scholar 

  • Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424

    Article  CAS  Google Scholar 

  • Nony P, Gaude H, Rossel M, Fournier L, Rouault JP, Billaud M (2003) Stability of the Peutz-Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37. Oncogene 22:9165–9175

    Article  CAS  Google Scholar 

  • Ono K, Sogawa C, Kawai H, Tran MT, Taha EA, Lu Y et al (2020) Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J Extracell Vesicles 9:1769373

    Article  CAS  Google Scholar 

  • Pan T, Peng Z, Tan L, Zou F, Zhou N, Liu B et al (2018) Nonsteroidal anti-inflammatory drugs potently inhibit the replication of Zika viruses by inducing the degradation of AXL. J Virol 92(20):e01018–e01018

    Article  CAS  Google Scholar 

  • Perdew GH, Wiegand H, Vanden Heuvel JP, Mitchell C, Singh SS (1997) A 50 kilodalton protein associated with raf and pp60(v-src) protein kinases is a mammalian homolog of the cell cycle control protein cdc37. Biochemistry 36:3600–3607

    Article  CAS  Google Scholar 

  • Polissi A, Goffin L, Georgopoulos C (1995) The Escherichia coli heat shock response and bacteriophage lambda development. FEMS Microbiol Rev 17:159–169

    Article  CAS  Google Scholar 

  • Prince T, Matts RL (2004) Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37. J Biol Chem 279:39975–39981

    Article  CAS  Google Scholar 

  • Prince T, Matts RL (2005) Exposure of protein kinase motifs that trigger binding of Hsp90 and Cdc37. Biochem Biophys Res Commun 338:1447–1454

    Article  CAS  Google Scholar 

  • Prince T, Sun L, Matts RL (2005) Cdk2: a genuine protein kinase client of Hsp90 and Cdc37. Biochemistry 44:15287–15295

    Article  CAS  Google Scholar 

  • Rao J, Lee P, Benzeno S, Cardozo C, Albertus J, Robins DM et al (2001) Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J Biol Chem 276:5814–5820

    Article  CAS  Google Scholar 

  • Reed SI (1980) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95:561–577

    Article  CAS  Google Scholar 

  • Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39:279–295

    Article  CAS  Google Scholar 

  • Rodina A, Wang T, Yan P, Gomes ED, Dunphy MP, Pillarsetty N et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    Article  CAS  Google Scholar 

  • Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW et al (2004) The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116:87–98

    Article  CAS  Google Scholar 

  • Roiniotis J, Masendycz P, Ho S, Scholz GM (2005) Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Biochemistry 44:6662–6669

    Article  CAS  Google Scholar 

  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20:665–680

    Article  CAS  Google Scholar 

  • Salminen A, Lehtonen M, Paimela T, Kaarniranta K (2010) Celastrol: molecular targets of thunder god vine. Biochem Biophys Res Commun 394:439–442

    Article  CAS  Google Scholar 

  • Scholz GM, Cartledge K, Hall NE (2001) Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37. J Biol Chem 276:30971–30979

    Article  CAS  Google Scholar 

  • Schwartz H, Scroggins B, Zuehlke A, Kijima T, Beebe K, Mishra A et al (2015) Combined HSP90 and kinase inhibitor therapy: insights from the cancer genome atlas. Cell Stress Chaperones 20:729–741

    Article  Google Scholar 

  • Shao J, Grammatikakis N, Scroggins BT, Uma S, Huang W, Chen JJ et al (2001) Hsp90 regulates p50(cdc37) function during the biogenesis of the activeconformation of the heme-regulated eIF2 alpha kinase. J Biol Chem 276:206–214

    Article  CAS  Google Scholar 

  • Shao J, Prince T, Hartson SD, Matts RL (2003) Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem 278:38117–38120

    Article  CAS  Google Scholar 

  • Smith JR, Workman P (2009) Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle 8:362–372

    Article  CAS  Google Scholar 

  • Smith JR, de Billy E, Hobbs S, Powers M, Prodromou C, Pearl L et al (2015) Restricting direct interaction of CDC37 with HSP90 does not compromise chaperoning of client proteins. Oncogene 34:15–26

    Article  CAS  Google Scholar 

  • Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502

    Article  CAS  Google Scholar 

  • Stepanova L, Finegold M, DeMayo F, Schmidt EV, Harper JW (2000a) The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol 20:4462–4473

    Article  CAS  Google Scholar 

  • Stepanova L, Yang G, DeMayo F, Wheeler TM, Finegold M, Thompson TC et al (2000b) Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia. Oncogene 19:2186–2193

    Article  CAS  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  Google Scholar 

  • Vaughan CK, Mollapour M, Smith JR, Truman A, Hu B, Good VM et al (2008) Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell 31:886–895

    Article  CAS  Google Scholar 

  • Verba KA, Wang RY, Arakawa A, Liu Y, Shirouzu M, Yokoyama S et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547

    Article  CAS  Google Scholar 

  • Wang L, Zhang L, Li L, Jiang J, Zheng Z, Shang J et al (2019) Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Sci Adv 5:eaax2277

    Article  CAS  Google Scholar 

  • Wu F, Peacock SO, Rao S, Lemmon SK, Burnstein KL (2013) Novel interaction between the co-chaperone Cdc37 and rho GTPase exchange factor Vav3 promotes androgen receptor activity and prostate cancer growth. J Biol Chem 288:5463–5474

    Article  CAS  Google Scholar 

  • Xu W, Yuan X, Xiang Z, Mimnaugh E, Marcu M, Neckers L (2005) Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat Struct Mol Biol 12:120–126

    Article  CAS  Google Scholar 

  • Xu W, Mollapour M, Prodromou C, Wang S, Scroggins BT, Palchick Z et al (2012) Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Mol Cell 47:434–443

    Article  CAS  Google Scholar 

Download references

Acknowledgments

#This work was supported by NIH research grants RO-1CA047407, R01CA119045, and RO-1CA094397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prince, T.L., Lang, B.J., Okusha, Y., Eguchi, T., Calderwood, S.K. (2023). Cdc37 as a Co-chaperone to Hsp90. In: Edkins, A.L., Blatch, G.L. (eds) The Networking of Chaperones by Co-Chaperones. Subcellular Biochemistry, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-031-14740-1_5

Download citation

Publish with us

Policies and ethics