Skip to main content

Mood Disorders and Creativity

  • Chapter
  • First Online:
Art and Neurological Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

In a broader cultural sense, mood disorders, particularly major depressive disorders (MDD) and bipolar disorders (BD), have been linked with greater creativity. However, empirical evidence for this relation is relatively scant. Nevertheless, existing data do suggest that highly creative individuals appear to display a higher incidence of mood disorders than their less creative counterparts. Creativity may also be somewhat higher in individuals with certain types of BD features. Current theories indicate that BD, which is comprised of manic or hypomanic and depressive episodes, may be more likely to be associated with creative thought and expression than depression. This may be because certain personality traits (e.g., novelty seeking) and psychological features (e.g., motivation and ambition), which are over-represented in BD, might be more conducive towards creative endeavours. On the other hand, depressed states may be favourable for introspection, which could, indirectly, lead to greater creativity when depression symptoms abate. From a neural perspective, a complex phenomenon such as creativity is likely subserved by interacting brain regional activity and networks. The same is true of mood disorders, which are largely characterized by a disturbed balance in activity within and between specific regions, and the networks that subserve them. Most consistently, the default mode network (DMN), has been implicated in mood disorders, and its activity has been linked with creativity. However, while the DMN may play an important link between creativity and mood disorders, it is unlikely to be the sole (or even key) element from a brain substrate perspective. Rather, creativity and mood disorders (i.e., highly complex phenomena) are likely underscored by modulations across the brain’s networks/activity (i.e., ‘whole brain phenomenon’), which are, in turn, driven by altered neurotransmitter activity (particularly, monoamine system function). In this chapter, we will explore the link between mood disorders and creativity by highlighting personality features, psychological phenomena and motivational aspects which could account for this link; we conclude by discussing some of the proposed underlying neuronal aspects linking creativity with mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. First MB, Williams JBW, Karg RS, Spitzer RL. Structured clinical interview for DSM-5® disorders—clinician version (SCID-5-CV). American Psychiatric Association Publishing; 2016. p. 94.

    Google Scholar 

  2. American Psychological Association (APA). Diagnostic and statistical manual of mental disorders: diagnostic and statistical manual of mental disorders, fifth edition. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Google Scholar 

  3. World Health Organization (WHO). International statistical classification of diseases and related health problems. 11th ed. Geneva: World Health Organization; 2016.

    Google Scholar 

  4. Beck AT, Steer RA, Brown KG. Manual for the Beck depression inventory-II. San Antonio, TX: Psychological Corp. Cavanagh, K, Shapiro, D A; 1996.

    Google Scholar 

  5. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:334–40.

    Article  Google Scholar 

  6. Kessler RC. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Arch Gen Psychiatry [Internet]. 1994;51(1):8. Available from: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.1994.03950010008002

    Article  CAS  PubMed  Google Scholar 

  7. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. Samet J, editor. PLoS Med [Internet]. 2006;3(11):e442. https://doi.org/10.1371/journal.pmed.0030442.

    Article  PubMed  Google Scholar 

  8. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet [Internet]. 2013;382(9904):1575–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673613616116.

    Article  PubMed  Google Scholar 

  9. Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, et al. The economic burden of depression in the United States. J Clin Psychiatry [Internet]. 2003;64(12):1465–75. Available from: http://article.psychiatrist.com/?ContentType=START&ID=10000620

    Article  PubMed  Google Scholar 

  10. Nübel J, Guhn A, Müllender S, Le HD, Cohrdes C, Köhler S. Persistent depressive disorder across the adult lifespan: results from clinical and population-based surveys in Germany. BMC Psychiatry. 2020;20(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cooper B. Sylvia Plath and the depression continuum. J R Soc Med. 2003;96(6):296–301.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rowland TA, Marwaha S. Epidemiology and risk factors for bipolar disorder. Ther Adv Psychopharmacol [Internet]. 2018;8(9):251–69. Available from: http://journals.sagepub.com/doi/10.1177/2045125318769235

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kessler R. Epidemiology of women and depression. J Affect Disord [Internet]. 2003;74(1):5–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165032702004263

    Article  PubMed  Google Scholar 

  14. Lange-Eichbaum WPM (trans. EC, Paul). The problem of genius. Kegan Paul & Co; 1931.

    Google Scholar 

  15. Taylor CL. Creativity and mood disorder: a systematic review and meta-analysis. Perspect Psychol Sci [Internet]. 2017;12(6):1040–76. Available from: http://journals.sagepub.com/doi/10.1177/1745691617699653

    Article  PubMed  Google Scholar 

  16. Patra BN, Balhara YPS. Creativity and mental disorder. Br J Psychiatry [Internet]. 2012;200(4):346. Available from: https://www.cambridge.org/core/product/identifier/S0007125000079344/type/journal_article

    Article  PubMed  Google Scholar 

  17. Welsh GS, Barron F. Barron-Welsh art scale. Palo Alto, CA: Consulting Psychologists Pr; 1959.

    Google Scholar 

  18. Carson SH, Peterson JB, Higgins DM. Reliability, validity, and factor structure of the creative achievement questionnaire. Creat Res J [Internet]. 2005;17(1):37–50. Available from: http://www.tandfonline.com/doi/abs/10.1207/s15326934crj1701_4

    Article  Google Scholar 

  19. Jamison KR. Touched with fire: manic-depressive illness and the artistic temperament. Touched with fire: manic-depressive illness and the artistic temperament, vol. xii, 370–xii. New York, NY, US: Free Press; 1993. p. 370.

    Google Scholar 

  20. Northoff G, Magioncalda P, Martino M, Lee HC, Tseng YC, Lane T. Too fast or too slow? Time and neuronal variability in bipolar disorder - a combined theoretical and empirical investigation. Schizophr Bull. 2018;44(1):54–64.

    Article  PubMed  Google Scholar 

  21. Frantom C, Sherman MF. At what price art? Affective instability within a visual art population. Creat Res J. 1999;12(1):15–23.

    Article  Google Scholar 

  22. Kinney DK, Richards R. Creativity as “compensatory advantage”: bipolar and schizophrenic liability, the inverted-U hypothesis, and practical implications. In: Kaufman JC, editor. Creativity and Mental Illness [Internet]. Cambridge: Cambridge University Press. p. 295–318. Available from: https://www.cambridge.org/core/product/identifier/CBO9781139128902A027/type/book_part.

  23. Szakács R. A kreativitás arculatai a bipoláris hangulatzavar tükrében. Ideggyogy Sz [Internet]. 2018:63–71. Available from: https://elitmed.hu/en/publications/clinical-neuroscience/the-facets-of-creativity-in-the-light-of-bipolar-mood-alterations

  24. Taylor K, Fletcher I, Lobban F. Exploring the links between the phenomenology of creativity and bipolar disorder. J Affect Disord [Internet]. 2015;174:658–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165032714006715

    Article  PubMed  Google Scholar 

  25. Power RA, Pluess M. Heritability estimates of the big five personality traits based on common genetic variants. Transl Psychiatry [Internet]. 2015;5(7):e604. Available from: http://www.nature.com/articles/tp201596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Widiger TA, Oltmanns JR. Neuroticism is a fundamental domain of personality with enormous public health implications. World Psychiatry [Internet]. 2017;16(2):144–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28498583

    Article  PubMed  PubMed Central  Google Scholar 

  27. Johnson SL, Tharp JA, Holmes MK. Understanding creativity in bipolar I disorder. Psychol Aesthetics, Creat Arts. 2015;9(3):319–27.

    Article  Google Scholar 

  28. Baas M, Nijstad BA, Boot NC, De Dreu CKW. Mad genius revisited: vulnerability to psychopathology, biobehavioral approach-avoidance, and creativity. Psychol Bull [Internet]. 2016;142(6):668–92. Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/bul0000049

    Article  PubMed  Google Scholar 

  29. Johnson SL, Murray G, Hou S, Staudenmaier PJ, Freeman MA, Michalak EE. Creativity is linked to ambition across the bipolar spectrum. J Affect Disord. 2015;178:160–4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry [Internet]. 2000;61(Suppl 6):4–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10775017

    CAS  PubMed  Google Scholar 

  31. Zhang F-F, Peng W, Sweeney JA, Jia Z-Y, Gong Q-Y. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther [Internet]. 2018;24(11):994–1003. Available from: http://doi.wiley.com/10.1111/cns.12835

    Article  PubMed  Google Scholar 

  32. Jaworska N, Wang H, Smith DM, Blier P, Knott V, Protzner AB. Pre-treatment EEG signal variability is associated with treatment success in depression. NeuroImage Clin [Internet]. 2018;17:368–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29159049

    Article  PubMed  Google Scholar 

  33. Cuellar AK, Johnson SL, Winters R. Distinctions between bipolar and unipolar depression. Clin Psychol Rev [Internet]. 2005;25(3):307–39. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272735804001710

    Article  PubMed  Google Scholar 

  34. Liu Z, Zhang J, Xie X, Rolls ET, Sun J, Zhang K, et al. Neural and genetic determinants of creativity. Neuroimage [Internet]. 2018;174:164–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811918301745

    Article  PubMed  Google Scholar 

  35. Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci [Internet]. 2014;1316(1):29–52. Available from: http://doi.wiley.com/10.1111/nyas.12360

    Article  PubMed  Google Scholar 

  36. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72(6):603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mashal N, Faust M, Hendler T, Jung-Beeman M. An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain Lang [Internet]. 2007;100(2):115–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0093934X05003093

    Article  CAS  PubMed  Google Scholar 

  38. Berkowitz AL, Ansari D. Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neuroimage [Internet]. 2010;49(1):712–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811909009525

    Article  PubMed  Google Scholar 

  39. Carlsson I, Wendt PE, Risberg J. On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia [Internet]. 2000;38(6):873–85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0028393299001281

    Article  CAS  PubMed  Google Scholar 

  40. Spielberg JM, Stewart JL, Levin RL, Miller GA, Heller W. Prefrontal cortex, emotion, and approach/withdrawal motivation. Soc Personal Psychol Compass [Internet]. 2008;2(1):135–53. Available from: http://doi.wiley.com/10.1111/j.1751-9004.2007.00064.x

    Article  PubMed  Google Scholar 

  41. Heller W, Nitschke JB, Etienne MA, Miller GA. Patterns of regional brain activity differentiate types of anxiety. J Abnorm Psychol. US: American Psychological Association. 1997;106:376–85.

    Article  CAS  Google Scholar 

  42. Kemp AH, Griffiths K, Felmingham KL, Shankman SA, Drinkenburg W, Arns M, et al. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biol Psychol [Internet]. 2010;85(2):350–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301051110002188

    Article  CAS  PubMed  Google Scholar 

  43. Chase HW, Phillips ML. Elucidating neural network functional connectivity abnormalities in bipolar disorder: toward a harmonized methodological approach. Biol Psychiatry Cogn Neurosci Neuroimaging [Internet]. 2016;1(3):288–98. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2451902216000604

    PubMed  Google Scholar 

  44. Carson SH. Creativity and psychopathology: a shared vulnerability model. Can J Psychiatry [Internet]. 2011;56(3):144–53. Available from: http://journals.sagepub.com/doi/10.1177/070674371105600304

    Article  PubMed  Google Scholar 

  45. Intergovernmental Panel on Climate Change. Detection and attribution of climate change: from global to regional. Climate Change 2013 - The Physical Science Basis [Internet]. Cambridge: Cambridge University Press. 867–952. Available from: https://www.cambridge.org/core/product/identifier/CBO9781107415324A030/type/book_part.

  46. Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry [Internet]. 2020;25(1):82–93. Available from: http://www.nature.com/articles/s41380-019-0406-4

    Article  PubMed  Google Scholar 

  47. Grandjean J, Corcoba A, Kahn MC, Upton AL, Deneris ES, Seifritz E, et al. A brain-wide functional map of the serotonergic responses to acute stress and fluoxetine. Nat Commun [Internet]. 2019;10(1):350. Available from: http://www.nature.com/articles/s41467-018-08256-w

    Article  PubMed  Google Scholar 

  48. Zerbi V, Floriou-Servou A, Markicevic M, Vermeiren Y, Sturman O, Privitera M, et al. Rapid reconfiguration of the functional connectome after Chemogenetic locus Coeruleus activation. Neuron [Internet]. 2019;103(4):702–718.e5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896627319304878

    Article  CAS  PubMed  Google Scholar 

  49. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. Spontaneous behaviors drive multidimensional, brainwide activity. Science (80-) [Internet]. 2019;364(6437):eaav7893. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.aav7893

  50. Zhang J, Magioncalda P, Huang Z, Tan Z, Hu X, Hu Z, et al. Altered global signal topography and its different regional localization in motor cortex and hippocampus in mania and depression. Schizophr Bull [Internet]. 2019;45(4):902–10. Available from: https://academic.oup.com/schizophreniabulletin/article/45/4/902/5114616

    Article  PubMed  Google Scholar 

  51. Murrough JW, Abdallah CG, Anticevic A, Collins KA, Geha P, Averill LA, et al. Reduced global functional connectivity of the medial prefrontal cortex in major depressive disorder. Hum Brain Mapp [Internet]. 2016;37(9):3214–23. Available from: http://doi.wiley.com/10.1002/hbm.23235

    Article  PubMed  Google Scholar 

  52. Scheinost D, Holmes SE, DellaGioia N, Schleifer C, Matuskey D, Abdallah CG, et al. Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in Unmedicated major depressive disorder. Neuropsychopharmacology [Internet]. 2018;43(5):1119–27. Available from: http://www.nature.com/articles/npp2017229

    Article  PubMed  Google Scholar 

  53. Scalabrini A, Vai B, Poletti S, Damiani S, Mucci C, Colombo C, et al. All roads lead to the default-mode network—global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology [Internet]. 2020;45(12):2058–69. Available from: http://www.nature.com/articles/s41386-020-0785-x

    Article  CAS  PubMed  Google Scholar 

  54. Abdallah CG, Averill CL, Salas R, Averill LA, Baldwin PR, Krystal JH, et al. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(7):566–74.

    PubMed  PubMed Central  Google Scholar 

  55. Han S, Wang X, He Z, Sheng W, Zou Q, Li L, et al. Decreased static and increased dynamic global signal topography in major depressive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry [Internet]. 2019;94:109665. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278584619301514

    Article  Google Scholar 

  56. Zhang L, Wu H, Xu J, Shang J. Abnormal global functional connectivity patterns in medication-free major depressive disorder. Front Neurosci [Internet]. 2018;9:12. Available from: https://www.frontiersin.org/article/10.3389/fnins.2018.00692/full

    Google Scholar 

  57. Kaufman SB, Quilty LC, Grazioplene RG, Hirsh JB, Gray JR, Peterson JB, et al. Openness to experience and intellect differentially predict creative achievement in the arts and sciences. J Pers [Internet]. 2016;84(2):248–58. Available from: http://doi.wiley.com/10.1111/jopy.12156

    Article  PubMed  Google Scholar 

  58. Vrieze E, Ceccarini J, Pizzagalli DA, Bormans G, Vandenbulcke M, Demyttenaere K, et al. Measuring extrastriatal dopamine release during a reward learning task. Hum Brain Mapp [Internet]. 2013;34(3):575–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22109979

    PubMed  Google Scholar 

  59. Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci [Internet]. 2013;7. Available from: http://journal.frontiersin.org/article/10.3389/fnins.2013.00201/abstract

  60. Khalil R, Godde B, Karim AA. The link between creativity, cognition, and creative drives and underlying neural mechanisms. Front Neural Circuits [Internet]. 2019;22:13. Available from: https://www.frontiersin.org/article/10.3389/fncir.2019.00018/full

    Google Scholar 

  61. Palmiero M, Piccardi L, Nori R, Palermo L, Salvi C, Guariglia C. Editorial: creativity and mental imagery. Front Psychol [Internet]. 2016;25:7. Available from: http://journal.frontiersin.org/Article/10.3389/fpsyg.2016.01280/abstract

    Google Scholar 

  62. Peet M, Peters S. Drug-induced mania. Drug Saf [Internet]. 1995;12(2):146–53. Available from: http://link.springer.com/10.2165/00002018-199512020-00007

    Article  CAS  PubMed  Google Scholar 

  63. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry [Internet]. 2017;22(5):666–79. Available from: http://www.nature.com/articles/mp201716

    Article  CAS  PubMed  Google Scholar 

  64. Flaherty AW. Frontotemporal and dopaminergic control of idea generation and creative drive. J Comp Neurol [Internet]. 2005;493(1):147–53. Available from: http://doi.wiley.com/10.1002/cne.20768

    Article  CAS  PubMed  Google Scholar 

  65. Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol [Internet]. 2017;20(12):1036–46. Available from: http://academic.oup.com/ijnp/article/20/12/1036/3901225

    Article  CAS  PubMed  Google Scholar 

  66. Albert PR, Benkelfat C. The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos Trans R Soc B Biol Sci [Internet]. 2013;368(1615):20120535. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0535

    Article  Google Scholar 

  67. Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci [Internet]. 2008;12(1):31–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1364661307003051

    Article  PubMed  Google Scholar 

  68. Barnhart WJ, Makela EH, Latocha MJ. SSRI-induced apathy syndrome: a clinical review. J Psychiatr Pract [Internet]. 2004;10(3):196–9. Available from: http://journals.lww.com/00131746-200405000-00010

    Article  PubMed  Google Scholar 

  69. Padala PR, Padala KP, Majagi AS, Garner KK, Dennis RA, Sullivan DH. Selective serotonin reuptake inhibitors-associated apathy syndrome. Medicine (Baltimore) [Internet]. 2020;99(33):e21497. Available from: https://journals.lww.com/10.1097/MD.0000000000021497

    Article  CAS  Google Scholar 

  70. Volf NV, Kulikov AV, Bortsov CU, Popova NK. Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neurosci Lett [Internet]. 2009;463(2):154–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304394009010192

    Article  CAS  PubMed  Google Scholar 

  71. Mason NL, Kuypers KPC, Reckweg JT, Müller F, Tse DHY, Da Rios B, et al. Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl Psychiatry [Internet]. 2021;11(1):209. Available from: http://www.nature.com/articles/s41398-021-01335-5

    Article  CAS  PubMed  Google Scholar 

  72. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct [Internet]. 2010;214(5–6):655–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20512370

    Article  PubMed  Google Scholar 

  73. Beaty RE, Kenett YN, Christensen AP, Rosenberg MD, Benedek M, Chen Q, et al. Robust prediction of individual creative ability from brain functional connectivity. Proc Natl Acad Sci [Internet]. 2018;115(5):1087–92. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1713532115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Jaworska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaworska, N., Northoff, G. (2023). Mood Disorders and Creativity. In: Richard, A., Pelowski, M., Spee, B.T. (eds) Art and Neurological Disorders. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-031-14724-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14724-1_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-14723-4

  • Online ISBN: 978-3-031-14724-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics