Abstract
Finding the most influential nodes in a network is a computationally hard problem with several possible applications in various kinds of network-based problems. While several methods have been proposed for tackling the influence maximisation (IM) problem, their runtime typically scales poorly when the network size increases. Here, we propose an original method, based on network downscaling, that allows a multi-objective evolutionary algorithm (MOEA) to solve the IM problem on a reduced scale network, while preserving the relevant properties of the original network. The downscaled solution is then upscaled to the original network, using a mechanism based on centrality metrics such as PageRank. Our results on eight large networks (including two with \(\sim \)50k nodes) demonstrate the effectiveness of the proposed method with a more than 10-fold runtime gain compared to the time needed on the original network, and an up to \(82\%\) time reduction compared to CELF.
Keywords
- Social network
- Influence maximisation
- Complex network
- Genetic algorithm
- Multi-objective optimisation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Code available at: https://github.com/eliacunegatti/Influence-Maximization.
- 2.
- 3.
We also compared directly the HV values. We applied the Wilcoxon Rank-Sum test (with \(\alpha =0.05\)) to analyse whether the HV values calculated on the downscaled solutions and the upscaled ones (with upscaling based on PageRank) were significantly different from the HV values obtained on the original network, all on 10 runs. All the pairwise comparisons resulted statistically significant, excluding the one related to the downscaled solutions found on Fb. Pag. with \(s=2\) and WC model.
References
Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004)
Broido, A.D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10(1), 1–10 (2019)
Bucur, D.: Top influencers can be identified universally by combining classical centralities. Sci. Rep. 10(1), 1–14 (2020)
Bucur, D., Iacca, G.: Influence maximization in social networks with genetic algorithms. In: EvoApplications (2016)
Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A.: Improving multi-objective evolutionary influence maximization in social networks. In: EvoApplications, pp. 117–124 (2018)
Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A.P.: Multi-objective evolutionary algorithms for influence maximization in social networks. In: EvoApplications (2017)
Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090. ACM (2011)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)
Fire, M., Puzis, R.: Organization mining using online social networks. Netw. Spat. Econ. 16(2), 545–578 (2015). https://doi.org/10.1007/s11067-015-9288-4
Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)
Gong, M., Song, C., Duan, C., Ma, L., Shen, B.: An efficient memetic algorithm for influence maximization in social networks. IEEE Comput. Intell. Mag. 11, 22–33 (2016)
Gong, M., Yan, J., Shen, B., Ma, L., Cai, Q.: Influence maximization in social networks based on discrete particle swarm optimization. Inf. Sci. 367–368, 600–614 (2016)
Güney, E., Leitner, M., Ruthmair, M., Sinnl, M.: Large-scale influence maximization via maximal covering location. Eur. J. Oper. Res. 289, 144–164 (2021)
Holland, P., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5, 109–137 (1983)
Iacca, G., Konotopska, K., Bucur, D., Tonda, A.: An evolutionary framework for maximizing influence propagation in social networks. Softw. Impacts 9, 100107 (2021)
Jiang, Q., Song, G., Cong, G., Wang, Y., Si, W., Xie, K.: Simulated annealing based influence maximization in social networks. In: AAAI (2011)
Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1Pt2), 016107 (2011)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)
Konotopska, K., Iacca, G.: Graph-aware evolutionary algorithms for influence maximization. In: GECCO Companion (2021)
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Vanbriesen, J.M., Glance, N.S.: Cost-effective outbreak detection in networks. In: KDD (2007)
Li, X., Smith, J.D., Dinh, T.N., Thai, M.T.: Tiptop: (almost) exact solutions for influence maximization in billion-scale networks. IEEE/ACM Trans. Networking 27, 649–661 (2019)
Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30, 1852–1872 (2018)
Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and applications: a survey. ACM Comput. Surv. (CSUR). 51(3), 1–34 (2018). https://dl.acm.org/doi/abs/10.1145/3186727
Lotf, J.J., Azgomi, M.A., Dishabi, M.R.E.: An improved influence maximization method for social networks based on genetic algorithm. Physica A 586, 126480 (2022)
Ma, L., et al.: Influence maximization in complex networks by using evolutionary deep reinforcement learning. IEEE Trans. Emerg. Topics Comput. Intell., 1–15 (2022). https://ieeexplore.ieee.org/document/9679820
McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS (2012)
Newman, M.: Networks. Oxford University Press, New York (2018)
Peixoto, T.P.: Nonparametric Bayesian inference of the microcanonical stochastic block model. Phys. Rev. E 95(1), 012317 (2017)
Richardson, M., Agrawal, R., Domingos, P.M.: Trust management for the semantic web. In: SEMWEB (2003)
Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: GEMSEC: graph embedding with self clustering. In: ASONAM, pp. 65–72 (2019)
Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: CIKM, pp. 1325–1334 (2020)
Traag, V.A., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019)
Wang, C., Zhao, J., Li, L., Jiao, L., Liu, J., Wu, K.: A multi-transformation evolutionary framework for influence maximization in social networks. arXiv preprint arXiv:2204.03297 (2022)
Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in large-scale social networks. Data Min. Knowl. Disc. 25, 545–576 (2012)
Wu, H.H., Küçükyavuz, S.: A two-stage stochastic programming approach for influence maximization in social networks. Comput. Optim. Appl. 69(3), 563–595 (2017). https://doi.org/10.1007/s10589-017-9958-x
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cunegatti, E., Iacca, G., Bucur, D. (2022). Large-Scale Multi-objective Influence Maximisation with Network Downscaling. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-14721-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14720-3
Online ISBN: 978-3-031-14721-0
eBook Packages: Computer ScienceComputer Science (R0)