Skip to main content

SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13398))

Included in the following conference series:

  • 1965 Accesses

Abstract

GNNs have achieved remarkable performance on graph classification tasks. It can be attributed to the accessibility of abundant graph data, which are usually isolated by different data owners. Graph Federated Learning (GraphFL) allows multiple clients to collaboratively build GNN models without explicitly sharing data. However, all existing works assume that all clients have fully labeled data, which is impractical in reality. This work focuses on the graph classification task with partially labeled data. (1) Enhancing the collaboration processes: We propose a new personalized FL framework to deal with Non-IID data. Clients with more similar data have greater mutual influence, where the similarities can be evaluated via unlabeled data. (2) Enhancing the local training process: We introduce auxiliary loss for unlabeled data that restrict the training process. We propose a new pseudo-label strategy for our SemiGraphFL framework to make more effective predictions. Extensive experimental results prove the effectiveness of our design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  2. He, C., et al.: Fedgraphnn: a federated learning system and benchmark for graph neural networks. arXiv preprint arXiv:2104.07145 (2021)

  3. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020)

  4. Jeong, W., Yoon, J., Yang, E., Hwang, S.J.: Federated semi-supervised learning with inter-client consistency & disjoint learning. arXiv preprint arXiv:2006.12097 (2020)

  5. Jiang, Y., Konečnỳ, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019)

  6. Jin, Y., Wei, X., Liu, Y., Yang, Q.: Towards utilizing unlabeled data in federated learning: a survey and prospective. arxiv. Learning (2020)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  8. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  9. Lalitha, A., Kilinc, O.C., Javidi, T., Koushanfar, F.: Peer-to-peer federated learning on graphs. arXiv preprint arXiv:1901.11173 (2019)

  10. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  11. Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2077–2085 (2018)

    Google Scholar 

  12. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  13. Ouali, Y., Hudelot, C., Tami, M.: An overview of deep semi-supervised learning. arXiv preprint arXiv:2006.05278 (2020)

  14. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3710–3722 (2021)

    Article  MathSciNet  Google Scholar 

  15. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.: Federated multi-task learning. arXiv preprint arXiv:1705.10467 (2017)

  16. Szklarczyk, D., et al.: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607–D613 (2019)

    Article  Google Scholar 

  17. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  19. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  20. Xian, X., Wang, X., Ding, J., Ghanadan, R.: Assisted learning: a framework for multi-organization learning. arXiv preprint arXiv:2004.00566 (2020)

  21. Xie, M., et al.: Multi-center federated learning. arXiv preprint arXiv:2108.08647 (2021)

  22. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  23. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  24. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  25. Zhang, M., Sapra, K., Fidler, S., Yeung, S., Alvarez, J.M.: Personalized federated learning with first order model optimization. arXiv preprint arXiv:2012.08565 (2020)

  26. Zhang, Z., et al.: Improving semi-supervised federated learning by reducing the gradient diversity of models. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1214–1225. IEEE (2021)

    Google Scholar 

Download references

Acknowledgements

The work is partly supported by Delta Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tao, Y., Li, Y., Wu, Z. (2022). SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics