Skip to main content

Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13398))

Included in the following conference series:

Abstract

Ensemble learning trains and combines multiple base learners for a single learning task, and has been among the state-of-the-art learning techniques. Ensemble pruning tries to select a subset of base learners instead of combining them all, with the aim of achieving a better generalization performance as well as a smaller ensemble size. Previous methods often use the validation error to estimate the generalization performance during optimization, while recent theoretical studies have disclosed that margin distribution is also crucial for better generalization. Inspired by this finding, we propose to formulate ensemble pruning as a three-objective optimization problem that optimizes the validation error, margin distribution, and ensemble size simultaneously, and then employ multi-objective evolutionary algorithms to solve it. Experimental results on 20 binary classification data sets show that our proposed method outperforms the state-of-the-art ensemble pruning methods significantly in both generalization performance and ensemble size.

This work was supported by the National Science Foundation of China (62022039, 61921006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming. Genetic Algorithms. Oxford University Press, Oxford, UK (1996)

    Book  Google Scholar 

  2. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble diversity measures and their application to thinning. Inf. Fusion 6(1), 49–62 (2005)

    Article  Google Scholar 

  3. Bartlett, P., Freund, Y., Lee, W.S., Schapire, R.E.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)

    Article  MathSciNet  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  5. Breiman, L.: Prediction games and arcing algorithms. Neural Comput. 11(7), 1493–1517 (1999)

    Article  Google Scholar 

  6. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  7. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: Proceedings of the 21st International Conference on Machine Learning (ICML 2004), pp. 18–25. Banff, Canada (2004)

    Google Scholar 

  8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Dietterich, T., Margineantu, D.: Pruning adaptive boosting. In: Proceedings of the 14th International Conference on Machine Learning (ICML 1997), pp. 211–218. Nashville, TN (1997)

    Google Scholar 

  11. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems 9 (NIPS 1996), pp. 155–161. Denver, CO (1996)

    Google Scholar 

  12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  13. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Bering (2015)

    Google Scholar 

  14. Gao, W., Zhou, Z.H.: On the doubt about margin explanation of boosting. Artif. Intell. 203, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  15. Grønlund, A., Kamma, L., Larsen, K.G., Mathiasen, A., Nelson, J.: Margin-based generalization lower bounds for boosted classifiers. In: Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, Canada, pp. 11940–11949 (2019)

    Google Scholar 

  16. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)

    Article  Google Scholar 

  17. Li, N., Yu, Y., Zhou, Z.H.: Diversity regularized ensemble pruning. In: Proceedings of the 23rd European Conference on Machine Learning (ECML 2012), Bristol, UK, pp. 330–345 (2012)

    Google Scholar 

  18. Li, N., Zhou, Z.H.: Selective ensemble under regularization framework. In: Proceedings of the 8th International Workshop on Multiple Classifier Systems (MCS 2009), Reykjavik, Iceland, pp. 293–303 (2009)

    Google Scholar 

  19. Lyu, S.H., Yang, L., Zhou, Z.H.: A refined margin distribution analysis for forest representation learning. In: Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, Canada, pp. 5531–5541 (2019)

    Google Scholar 

  20. Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A.: An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 245–259 (2008)

    Article  Google Scholar 

  21. Martínez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), Pittsburgh, PA, pp. 609–616 (2006)

    Google Scholar 

  22. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  23. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective evolutionary optimization. Artif. Intell. 204, 99–119 (2013)

    Article  MathSciNet  Google Scholar 

  24. Qian, C., Yu, Y., Zhou, Z.H.: Pareto ensemble pruning. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), Austin, TX, pp. 2935–2941 (2015)

    Google Scholar 

  25. Reyzin, L., Schapire, R.E.: How boosting the margin can also boost classifier complexity. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), Pittsburgh, PA , pp. 753–760 (2006)

    Google Scholar 

  26. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Article  Google Scholar 

  27. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  28. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  29. Zhang, T., Zhou, Z.H.: Optimal margin distribution clustering. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, pp. 4474–4481 (2018)

    Google Scholar 

  30. Zhang, T., Zhou, Z.H.: Optimal margin distribution machine. IEEE Trans. Knowl. Data Eng. 32(6), 1143–1156 (2019)

    Article  MathSciNet  Google Scholar 

  31. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC Press, Boca Raton, FL (2012)

    Book  Google Scholar 

  32. Zhou, Z.H.: Large margin distribution learning. In: Proceedings of the 6th International Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2014), Montreal, Canada, pp. 1–11 (2014)

    Google Scholar 

  33. Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Proceddings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2003), Chongqing, China, pp. 476–483 (2003)

    Google Scholar 

  34. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)

    Article  MathSciNet  Google Scholar 

  35. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algorithms. Springer, Singapore (2019)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, YC., He, YX., Qian, C., Zhou, ZH. (2022). Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics