Skip to main content

Restriction Site Detection in Optical Mapping Data

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 527))

  • 454 Accesses

Abstract

Optical Mapping is a method of DNA sequencing that is used to detect large structural variations in genomes. To create these optical maps a restriction enzyme is mixed with DNA. The enzyme binds to DNA and creates labels called restriction sites. These labels are captured by a camera where they appear as bright spots. This work introduces two methods to find these high-intensity points in optical maps. The first method is trying to find the peaks based only on intensity levels and the second is using a signal-to-noise ratio. Both methods have more than three parameters that can affect the results. Differential evolution and particle swarm optimization were used to find the best parameters that would give the highest accuracy. Bionano results were used as ground truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aston, C., Mishra, B., Schwartz, D.C.: Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol. 17(7), 297–302 (1999)

    Article  Google Scholar 

  2. Bocklandt, S., Hastie, A., Cao, H.: Bionano genome mapping: high-throughput, ultra-long molecule genome analysis system for precision genome assembly and haploid-resolved structural variation discovery. Single Mol. Single Cell Seq. 97–118 (2019)

    Google Scholar 

  3. Chan, S., et al.: Structural variation detection and analysis using bionano optical mapping. In: Bickhart, D.M. (ed.) Copy Number Variants. MMB, vol. 1833, pp. 193–203. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-8666-8_16

    Chapter  Google Scholar 

  4. Chen, M., et al.: Identification of a likely pathogenic structural variation in the lama1 gene by bionano optical mapping. NPJ Genom. Med. 5(1), 1–6 (2020)

    Article  Google Scholar 

  5. Deschamps, S., et al.: A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 9(1), 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  6. Doleží, V., Gajdoš, P.: Analysis of optical mapping data with neural network. In: Barolli, L., Chen, H.-C., Miwa, H. (eds.) INCoS 2021. LNNS, vol. 312, pp. 243–252. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84910-8_26

    Chapter  Google Scholar 

  7. Feoktistov, V.: Differential Evolution. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36896-2

    Book  MATH  Google Scholar 

  8. Levy-Sakin, M., Ebenstein, Y.: Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy. Curr. Opin. Biotechnol. 24(4), 690–698 (2013)

    Article  Google Scholar 

  9. Mondal, S., Jeffet, J., Ambrose, B., Craggs, T., Ebenstein, Y.: Single molecule multi-color multi-pair fret microscopy. Bull. Am. Phys. Soc. (2022)

    Google Scholar 

  10. Muggli, M., Puglisi, S., Boucher, C.: Algorithms in Bioinformatics. Lecture Notes in Computer Science, p. 68. Springer, Heidelberg (2014)

    Book  Google Scholar 

  11. Nagarajan, N., Read, T.D., Pop, M.: Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 24(10), 1229–1235 (2008)

    Article  Google Scholar 

  12. Nyberg, L.K., et al.: Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules. Sci. Rep. 6(1), 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  13. Pang, A., Lee, J., Anantharaman, T., Lam, E., Hastie, A., Borodkin, M.: Comprehensive detection of germline and somatic structural mutation in cancer genomes by bionano genomics optical mapping. J. Biomol. Tech.: JBT 30(Suppl), S9–S9 (2019)

    Google Scholar 

  14. Pang, A., Lee, J., Anantharaman, T., Lam, E., Hastie, A., Borodkin, M.: Comprehensive detection of germline and somatic structural mutation in cancer genomes by bionano genomics optical mapping. J. Biomol. Technol. 30, S9 (2019)

    Google Scholar 

  15. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  16. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2008)

    Article  Google Scholar 

  17. Shelton, J.M., et al.: Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genom. 16(1), 1–16 (2015)

    Article  Google Scholar 

  18. Valouev, A., et al.: Alignment of optical maps. J. Comput. Biol. 13(2), 442–462 (2006)

    Article  MathSciNet  Google Scholar 

  19. Yuan, Y., Chung, C.Y.-L., Chan, T.-F.: Advances in optical mapping for genomic research. Comput. Struct. Biotechnol. J. 18, 2051–2062 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by a grant by the Ministry of Health of the Czech Republic (no. NU21-06-00370), and internal grant projects of VSB-Technical University of Ostrava (SGS projects, grant number SP2022/77).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Doleží .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

None declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doleží, V., Gajdoš, P., Běhálek, M., Vašínek, M. (2022). Restriction Site Detection in Optical Mapping Data. In: Barolli, L., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2022. Lecture Notes in Networks and Systems, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-14627-5_40

Download citation

Publish with us

Policies and ethics