Skip to main content

Systemic Inflammatory Response and Cardiopulmonary Bypass

  • Chapter
  • First Online:
Essentials of Operative Cardiac Surgery

Abstract

Cardiac surgery with cardiopulmonary bypass (CPB) is associated with intense acute systemic inflammatory response (SIRS). SIRS is an exaggerated complex defense response involving multiple cellular, humoral, metabolic pathways and endocrine systems, leading to significant morbidity and mortality. Neutrophil-endothelium interaction and the cross-talk between coagulation and inflammation are the primary pathophysiological mechanisms in CPB-related SIRS. Emerging therapies aiming to inhibit the uncontrolled inflammatory response during CPB may provide clinical benefit and reverse adverse clinical outcomes. Clinical observations and level of evidence will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT::

activated clotting time

CABG::

coronary artery bypass grafting

CPB::

cardiopulmonary bypass

CRRT::

continuous renal replacement therapy

DAMP::

damage associated molecular pattern

DIC::

disseminated intravascular coagulation

ET::

endothelin

FDPs::

fibrin degradation products

HBC::

heparin bonded circuits

HPA::

hypothalamic-pituitary-adrenal

IL::

interleukin

MECC::

minimized extracorporeal circulation

NO::

nitric oxide

PAMP::

pathogen associated molecular pattern

PGI2::

prostacyclin

ROS::

reactive oxygen species

SDD::

selective decontamination of the digestive tract

SIRS::

systemic inflammatory response syndrome

TXA2::

thromboxane

References

  1. Taylor KM. SIRS–the systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61(6):1607–8.

    Article  CAS  Google Scholar 

  2. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update Eur J Cardiothorac Surg. 2002;21(2):232–44.

    Article  CAS  Google Scholar 

  3. Chakraborty RK, Burns B. Systemic inflammatory response syndrome. Treasure Island (FL): StatPearls; 2019.

    Google Scholar 

  4. Punjabi PP, Taylor KM. The science and practice of cardiopulmonary bypass: from cross circulation to ECMO and SIRS. Glob Cardiol Sci Pract. 2013;2013(3):249–60.

    Google Scholar 

  5. Cremer J, Martin M, Redl H, Bahrami S, Abraham C, Graeter T, et al. Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61(6):1714–20.

    Article  CAS  Google Scholar 

  6. Lee WH Jr, Krumhaar D, Fonkalsrud EW, Schjeide OA, Maloney JV Jr. Denaturation of plasma proteins as a cause of morbidity and death after intracardiac operations. Surgery. 1961;50:29–39.

    CAS  Google Scholar 

  7. Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone EH, Kirklin JW. Complement activation during cardiopulmonary bypass: evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med. 1981;304(9):497–503.

    Article  CAS  Google Scholar 

  8. Wachtfogel YT, Kucich U, Greenplate J, Gluszko P, Abrams W, Weinbaum G, et al. Human neutrophil degranulation during extracorporeal circulation. Blood. 1987;69(1):324–30.

    Article  CAS  Google Scholar 

  9. Edmunds LH Jr. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1998;66(5 Suppl):S12–6. discussion S25-8

    Article  Google Scholar 

  10. Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 2003;75(2):S715–20.

    Article  Google Scholar 

  11. Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97(1):215–52.

    Article  CAS  Google Scholar 

  12. Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int J Surg. 2005;3(2):129–40.

    Article  CAS  Google Scholar 

  13. Boehne M, Sasse M, Karch A, Dziuba F, Horke A, Kaussen T, et al. Systemic inflammatory response syndrome after pediatric congenital heart surgery: incidence, risk factors, and clinical outcome. J Card Surg. 2017;32(2):116–25.

    Article  Google Scholar 

  14. Fransen E, Maessen J, Dentener M, Senden N, Geskes G, Buurman W. Systemic inflammation present in patients undergoing CABG without extracorporeal circulation. Chest. 1998;113(5):1290–5.

    Article  CAS  Google Scholar 

  15. Zhang WR, Garg AX, Coca SG, Devereaux PJ, Eikelboom J, Kavsak P, et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123–32.

    Article  CAS  Google Scholar 

  16. Taylor KM. Brain damage during cardiopulmonary bypass. Ann Thorac Surg. 1998;65(4 Suppl):S20–6. discussion S7-8

    CAS  Google Scholar 

  17. Landis RC. 20 years on: is it time to redefine the systemic inflammatory response to cardiothoracic surgery? J Extra Corpor Technol. 2015;47(1):5–9.

    Google Scholar 

  18. MacCallum NS, Finney SJ, Gordon SE, Quinlan GJ, Evans TW. Modified criteria for the systemic inflammatory response syndrome improves their utility following cardiac surgery. Chest. 2014;145(6):1197–203.

    Article  Google Scholar 

  19. Squiccimarro E, Labriola C, Malvindi PG, Margari V, Guida P, Visicchio G, et al. Prevalence and clinical impact of systemic inflammatory reaction after cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(6):1682–90.

    Article  Google Scholar 

  20. Dieleman JM, Peelen LM, Coulson TG, Tran L, Reid CM, Smith JA, et al. Age and other perioperative risk factors for postoperative systemic inflammatory response syndrome after cardiac surgery. Br J Anaesth. 2017;119(4):637–44.

    Article  CAS  Google Scholar 

  21. Guvener M, Korun O, Demirturk OS. Risk factors for systemic inflammatory response after congenital cardiac surgery. J Card Surg. 2015;30(1):92–6.

    Article  Google Scholar 

  22. Asimakopoulos G, Taylor KM. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules. Ann Thorac Surg. 1998;66(6):2135–44.

    Article  CAS  Google Scholar 

  23. Hammon JW Jr, Vinten-Johansen J. Myocardial protection from surgical ischemic-reperfusion injury. Introduction Ann Thorac Surg. 1999;68(5):1897.

    Article  Google Scholar 

  24. Michalski M, Pagowska-Klimek I, Thiel S, Swierzko AS, Hansen AG, Jensenius JC, et al. Factors involved in initiation and regulation of complement lectin pathway influence postoperative outcome after pediatric cardiac surgery involving cardiopulmonary bypass. Sci Rep. 2019;9(1):2930.

    Article  Google Scholar 

  25. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983;86(6):845–57.

    Article  CAS  Google Scholar 

  26. Struber M, Cremer JT, Gohrbandt B, Hagl C, Jankowski M, Volker B, et al. Human cytokine responses to coronary artery bypass grafting with and without cardiopulmonary bypass. Ann Thorac Surg. 1999;68(4):1330–5.

    Article  CAS  Google Scholar 

  27. Hsing CH, Hsieh MY, Chen WY, Cheung So E, Cheng BC, Chang MS. Induction of interleukin-19 and interleukin-22 after cardiac surgery with cardiopulmonary bypass. Ann Thorac Surg. 2006;81(6):2196–201.

    Article  Google Scholar 

  28. Wan S, DeSmet JM, Barvais L, Goldstein M, Vincent JL, LeClerc JL. Myocardium is a major source of proinflammatory cytokines in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;112(3):806–11.

    Article  CAS  Google Scholar 

  29. Kotani N, Hashimoto H, Sessler DI, Muraoka M, Wang JS, O'Connor MF, et al. Cardiopulmonary bypass produces greater pulmonary than systemic proinflammatory cytokines. Anesth Analg. 2000;90(5):1039–45.

    Article  CAS  Google Scholar 

  30. Aird WC. Endothelium as an organ system. Crit Care Med. 2004;32(5 Suppl):S271–9.

    Article  Google Scholar 

  31. Wolinsky H. A proposal linking clearance of circulating lipoproteins to tissue metabolic activity as a basis for understanding atherogenesis. Circ Res. 1980;47(3):301–11.

    Article  CAS  Google Scholar 

  32. Aird WC. Endothelium and haemostasis. Hamostaseologie. 2015;35(1):11–6.

    Article  CAS  Google Scholar 

  33. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363(7):689–91.

    Article  CAS  Google Scholar 

  34. Samankatiwat P, Samartzis I, Lertsithichai P, Stefanou D, Punjabi PP, Taylor KM, et al. Leucocyte depletion in cardiopulmonary bypass: a comparison of four strategies. Perfusion. 2003;18(2):95–105.

    Article  Google Scholar 

  35. Friedenberg WR, Myers WO, Plotka ED, Beathard JN, Kummer DJ, Gatlin PF, et al. Platelet dysfunction associated with cardiopulmonary bypass. Ann Thorac Surg. 1978;25(4):298–305.

    Article  CAS  Google Scholar 

  36. Ho LTS, Lenihan M, McVey MJ, Karkouti K. Transfusion avoidance in cardiac surgery study i. the association between platelet dysfunction and adverse outcomes in cardiac surgical patients. Anaesthesia. 2019;74(9):1130–7.

    Article  CAS  Google Scholar 

  37. Czer LS, Bateman TM, Gray RJ, Raymond M, Stewart ME, Lee S, et al. Treatment of severe platelet dysfunction and hemorrhage after cardiopulmonary bypass: reduction in blood product usage with desmopressin. J Am Coll Cardiol. 1987;9(5):1139–47.

    Article  CAS  Google Scholar 

  38. Weerasinghe A, Taylor KM. The platelet in cardiopulmonary bypass. Ann Thorac Surg. 1998;66(6):2145–52.

    Article  CAS  Google Scholar 

  39. Zilla P, Fasol R, Groscurth P, Klepetko W, Reichenspurner H, Wolner E. Blood platelets in cardiopulmonary bypass operations. Recovery occurs after initial stimulation, rather than continual activation. J Thorac Cardiovasc Surg. 1989;97(3):379–88.

    Article  CAS  Google Scholar 

  40. Lopez-Vilchez I, Diaz-Ricart M, White JG, Escolar G, Galan AM. Serotonin enhances platelet procoagulant properties and their activation induced during platelet tissue factor uptake. Cardiovasc Res. 2009;84(2):309–16.

    Article  CAS  Google Scholar 

  41. Wallach R, Karp RB, Reves JG, Oparil S, Smith LR, James TN. Pathogenesis of paroxysmal hypertension developing during and after coronary bypass surgery: a study of hemodynamic and humoral factors. Am J Cardiol. 1980;46(4):559–65.

    Article  CAS  Google Scholar 

  42. Taylor KM, Wright GS, Reid JM, Bain WH, Caves PK, Walker MS, et al. Comparative studies of pulsatile and nonpulsatile flow during cardiopulmonary bypass. II. The effects on adrenal secretion of cortisol. J Thorac Cardiovasc Surg. 1978;75(4):574–8.

    Article  CAS  Google Scholar 

  43. Uozumi T, Manabe H, Kawashima Y, Hamanaka Y, Monden Y. Plasma cortisol, corticosterone and non-protein-bound cortisol in extra-corporeal circulation. Acta Endocrinol. 1972;69(3):517–25.

    CAS  Google Scholar 

  44. Gaudino M, Di Castelnuovo A, Zamparelli R, Andreotti F, Burzotta F, Iacoviello L, et al. Genetic control of postoperative systemic inflammatory reaction and pulmonary and renal complications after coronary artery surgery. J Thorac Cardiovasc Surg. 2003;126(4):1107–12.

    Article  CAS  Google Scholar 

  45. Grunenfelder J, Umbehr M, Plass A, Bestmann L, Maly FE, Zund G, et al. Genetic polymorphisms of apolipoprotein E4 and tumor necrosis factor beta as predisposing factors for increased inflammatory cytokines after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2004;128(1):92–7.

    Article  Google Scholar 

  46. Raja SG, Dreyfus GD. Modulation of systemic inflammatory response after cardiac surgery. Asian Cardiovasc Thorac Ann. 2005;13(4):382–95.

    Article  Google Scholar 

  47. Lodge AJ, Chai PJ, Daggett CW, Ungerleider RM, Jaggers J. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg. 1999;117(3):515–22.

    Article  CAS  Google Scholar 

  48. Malagon I, Onkenhout W, Klok M, Linthorst L, van der Poel PF, Bovill JG, et al. Dexamethasone reduces gut permeability in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2005;130(2):265–71.

    Article  CAS  Google Scholar 

  49. Dieleman JM, Nierich AP, Rosseel PM, van der Maaten JM, Hofland J, Diephuis JC, et al. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA. 2012;308(17):1761–7.

    Article  Google Scholar 

  50. Whitlock RP, Devereaux PJ, Teoh KH, Lamy A, Vincent J, Pogue J, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(10000):1243–53.

    Article  CAS  Google Scholar 

  51. Keski-Nisula J, Pesonen E, Olkkola KT, Peltola K, Neuvonen PJ, Tuominen N, et al. Methylprednisolone in neonatal cardiac surgery: reduced inflammation without improved clinical outcome. Ann Thorac Surg. 2013;95(6):2126–32.

    Article  Google Scholar 

  52. Royston D, Bidstrup BP, Taylor KM, Sapsford RN. Effect of aprotinin on need for blood transfusion after repeat open-heart surgery. Lancet. 1987;2(8571):1289–91.

    Article  CAS  Google Scholar 

  53. Day JR, Landis RC, Taylor KM. Aprotinin and the protease-activated receptor 1 thrombin receptor: antithrombosis, inflammation, and stroke reduction. Semin Cardiothorac Vasc Anesth. 2006;10(2):132–42.

    Article  CAS  Google Scholar 

  54. Lowson SM, Hassan HM, Rich GF. The effect of nitric oxide on platelets when delivered to the cardiopulmonary bypass circuit. Anesth Analg. 1999;89(6):1360–5.

    Article  CAS  Google Scholar 

  55. Mellgren K, Mellgren G, Lundin S, Wennmalm A, Wadenvik H. Effect of nitric oxide gas on platelets during open heart operations. Ann Thorac Surg. 1998;65(5):1335–41.

    Article  CAS  Google Scholar 

  56. Checchia PA, Bronicki RA, Muenzer JT, Dixon D, Raithel S, Gandhi SK, et al. Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children–a randomized trial. J Thorac Cardiovasc Surg. 2013;146(3):530–6.

    Article  CAS  Google Scholar 

  57. Westhuyzen J, Cochrane AD, Tesar PJ, Mau T, Cross DB, Frenneaux MP, et al. Effect of preoperative supplementation with alpha-tocopherol and ascorbic acid on myocardial injury in patients undergoing cardiac operations. J Thorac Cardiovasc Surg. 1997;113(5):942–8.

    Article  CAS  Google Scholar 

  58. Yau TM, Weisel RD, Mickle DA, Burton GW, Ingold KU, Ivanov J, et al. Vitamin E for coronary bypass operations. A prospective, double-blind, randomized trial. J Thorac Cardiovasc Surg. 1994;108(2):302–10.

    Article  CAS  Google Scholar 

  59. Butterworth J, Legault C, Stump DA, Coker L, Hammon JW Jr, Troost BT, et al. A randomized, blinded trial of the antioxidant pegorgotein: no reduction in neuropsychological deficits, inotropic drug support, or myocardial ischemia after coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 1999;13(6):690–4.

    Article  CAS  Google Scholar 

  60. Angstwurm MW, Schottdorf J, Schopohl J, Gaertner R. Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit Care Med. 1999;27(9):1807–13.

    Article  CAS  Google Scholar 

  61. Quan ZF, Yang C, Li N, Li JS. Effect of glutamine on change in early postoperative intestinal permeability and its relation to systemic inflammatory response. World J Gastroenterol. 2004;10(13):1992–4.

    Article  CAS  Google Scholar 

  62. Kirschfink M. Controlling the complement system in inflammation. Immunopharmacology. 1997;38(1–2):51–62.

    Article  CAS  Google Scholar 

  63. Verrier ED, Shernan SK, Taylor KM, Van de Werf F, Newman MF, Chen JC, et al. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: a randomized trial. JAMA. 2004;291(19):2319–27.

    Article  CAS  Google Scholar 

  64. Miyamoto T, Ozaki S, Inui A, Tanaka Y, Yamada Y, Matsumoto N. C1 esterase inhibitor in pediatric cardiac surgery with cardiopulmonary bypass plays a vital role in activation of the complement system. Heart Vessel. 2019;

    Google Scholar 

  65. Rathmell JP, Prielipp RC, Butterworth JF, Williams E, Villamaria F, Testa L, et al. A multicenter, randomized, blind comparison of amrinone with milrinone after elective cardiac surgery. Anesth Analg. 1998;86(4):683–90.

    CAS  Google Scholar 

  66. Schick MA, Wunder C, Wollborn J, Roewer N, Waschke J, Germer CT, et al. Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation. J Physiol. 2012;590(11):2693–708.

    Article  CAS  Google Scholar 

  67. Takeuchi K, del Nido PJ, Ibrahim AE, Cao-Danh H, Friehs I, Glynn P, et al. Vesnarinone and amrinone reduce the systemic inflammatory response syndrome. J Thorac Cardiovasc Surg. 1999;117(2):375–82.

    Article  CAS  Google Scholar 

  68. Hayashida N, Tomoeda H, Oda T, Tayama E, Chihara S, Kawara T, et al. Inhibitory effect of milrinone on cytokine production after cardiopulmonary bypass. Ann Thorac Surg. 1999;68(5):1661–7.

    Article  CAS  Google Scholar 

  69. Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, et al. The effects of ibuprofen on the physiology and survival of patients with sepsis. The ibuprofen in sepsis study group. N Engl J Med. 1997;336(13):912–8.

    Article  CAS  Google Scholar 

  70. Arons MM, Wheeler AP, Bernard GR, Christman BW, Russell JA, Schein R, et al. Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Ibuprofen in sepsis study group. Crit Care Med. 1999;27(4):699–707.

    Article  CAS  Google Scholar 

  71. Otani S, Kuinose M, Murakami T, Saito S, Iwagaki H, Tanaka N, et al. Preoperative oral administration of pentoxifylline ameliorates respiratory index after cardiopulmonary bypass through decreased production of IL-6. Acta Med Okayama. 2008;62(2):69–74.

    CAS  Google Scholar 

  72. Staubach KH, Schroder J, Stuber F, Gehrke K, Traumann E, Zabel P. Effect of pentoxifylline in severe sepsis: results of a randomized, double-blind, placebo-controlled study. Arch Surg. 1998;133(1):94–100.

    Article  CAS  Google Scholar 

  73. Lauterbach R, Pawlik D, Kowalczyk D, Ksycinski W, Helwich E, Zembala M. Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med. 1999;27(4):807–14.

    Article  CAS  Google Scholar 

  74. Lauterbach R, Zembala M. Pentoxifylline reduces plasma tumour necrosis factor-alpha concentration in premature infants with sepsis. Eur J Pediatr. 1996;155(5):404–9.

    Article  CAS  Google Scholar 

  75. Starck CT, Bettex D, Felix C, Reser D, Dreizler T, Hasenclever P, et al. Initial results of an optimized perfusion system. Perfusion. 2013;28(4):292–7.

    Article  CAS  Google Scholar 

  76. Koster A, Bottcher W, Merkel F, Hetzer R, Kuppe H. The more closed the bypass system the better: a pilot study on the effects of reduction of cardiotomy suction and passive venting on hemostatic activation during on-pump coronary artery bypass grafting. Perfusion. 2005;20(5):285–8.

    Article  Google Scholar 

  77. Gott VL, Whiffen JD, Dutton RC. Heparin bonding on colloidal graphite surfaces. Science. 1963;142(3597):1297–8.

    Article  CAS  Google Scholar 

  78. Gott VL, Daggett RL. Serendipity and the development of heparin and carbon surfaces. Ann Thorac Surg. 1999;68(3 Suppl):S19–22.

    Article  CAS  Google Scholar 

  79. Mangoush O, Purkayastha S, Haj-Yahia S, Kinross J, Hayward M, Bartolozzi F, et al. Heparin-bonded circuits versus nonheparin-bonded circuits: an evaluation of their effect on clinical outcomes. Eur J Cardiothorac Surg. 2007;31(6):1058–69.

    Article  Google Scholar 

  80. Koster A, Fischer T, Praus M, Haberzettl H, Kuebler WM, Hetzer R, et al. Hemostatic activation and inflammatory response during cardiopulmonary bypass: impact of heparin management. Anesthesiology. 2002;97(4):837–41.

    Article  CAS  Google Scholar 

  81. Treacher DF, Sabbato M, Brown KA, Gant V. The effects of leucodepletion in patients who develop the systemic inflammatory response syndrome following cardiopulmonary bypass. Perfusion. 2001;16(Suppl):67–73.

    Article  Google Scholar 

  82. Jaffer U, Wade RG, Gourlay T. Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2(3):161–75.

    CAS  Google Scholar 

  83. Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991;84(5 Suppl):III422–31.

    CAS  Google Scholar 

  84. Journois D, Pouard P, Greeley WJ, Mauriat P, Vouhe P, Safran D. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Effects on hemostasis, cytokines, and complement components. Anesthesiology. 1994;81(5):1181–9. discussion 26A-27A

    Article  CAS  Google Scholar 

  85. Wang S, Palanzo D, Undar A. Current ultrafiltration techniques before, during and after pediatric cardiopulmonary bypass procedures. Perfusion. 2012;27(5):438–46.

    Article  CAS  Google Scholar 

  86. Grunenfelder J, Zund G, Schoeberlein A, Maly FE, Schurr U, Guntli S, et al. Modified ultrafiltration lowers adhesion molecule and cytokine levels after cardiopulmonary bypass without clinical relevance in adults. Eur J Cardiothorac Surg. 2000;17(1):77–83.

    Article  CAS  Google Scholar 

  87. Trager K, Fritzler D, Fischer G, Schroder J, Skrabal C, Liebold A, et al. Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: a case series. Int J Artif Organs. 2016;39(3):141–6.

    Article  Google Scholar 

  88. Parolari A, Alamanni F, Naliato M, Spirito R, Franze V, Pompilio G, et al. Adult cardiac surgery outcomes: role of the pump type. Eur J Cardiothorac Surg. 2000;18(5):575–82.

    Article  CAS  Google Scholar 

  89. Steinbrueckner BE, Steigerwald U, Keller F, Neukam K, Elert O, Babin-Ebell J. Centrifugal and roller pumps–are there differences in coagulation and fibrinolysis during and after cardiopulmonary bypass? Heart Vessel. 1995;10(1):46–53.

    Article  CAS  Google Scholar 

  90. Moen O, Fosse E, Dregelid E, Brockmeier V, Andersson C, Hogasen K, et al. Centrifugal pump and heparin coating improves cardiopulmonary bypass biocompatibility. Ann Thorac Surg. 1996;62(4):1134–40.

    Article  CAS  Google Scholar 

  91. Misoph M, Babin-Ebell J, Schwender S. A comparative evaluation of the effect of pump type and heparin-coated surfaces on platelets during cardiopulmonary bypass. Thorac Cardiovasc Surg. 1997;45(6):302–6.

    Article  CAS  Google Scholar 

  92. Perttila J, Salo M, Peltola O. Comparison of the effects of centrifugal versus roller pump on the immune response in open-heart surgery. Perfusion. 1995;10(4):249–56.

    Article  CAS  Google Scholar 

  93. Ashraf S, Butler J, Tian Y, Cowan D, Lintin S, Saunders NR, et al. Inflammatory mediators in adults undergoing cardiopulmonary bypass: comparison of centrifugal and roller pumps. Ann Thorac Surg. 1998;65(2):480–4.

    Article  CAS  Google Scholar 

  94. Baufreton C, Intrator L, Jansen PG, te Velthuis H, Le Besnerais P, Vonk A, et al. Inflammatory response to cardiopulmonary bypass using roller or centrifugal pumps. Ann Thorac Surg. 1999;67(4):972–7.

    Article  CAS  Google Scholar 

  95. Orime Y, Shiono M, Hata H, Yagi S, Tsukamoto S, Okumura H, et al. Cytokine and endothelial damage in pulsatile and nonpulsatile cardiopulmonary bypass. Artif Organs. 1999;23(6):508–12.

    Article  CAS  Google Scholar 

  96. Watarida S, Mori A, Onoe M, Tabata R, Shiraishi S, Sugita T, et al. A clinical study on the effects of pulsatile cardiopulmonary bypass on the blood endotoxin levels. J Thorac Cardiovasc Surg. 1994;108(4):620–5.

    Article  CAS  Google Scholar 

  97. Taggart DP, Sundaram S, McCartney C, Bowman A, McIntyre H, Courtney JM, et al. Endotoxemia, complement, and white blood cell activation in cardiac surgery: a randomized trial of laxatives and pulsatile perfusion. Ann Thorac Surg. 1994;57(2):376–82.

    Article  CAS  Google Scholar 

  98. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950;132(5):849–66.

    Article  CAS  Google Scholar 

  99. Martin DR, Scott DF, Downes GL, Belzer FO. Primary cause of unsuccessful liver and heart preservation: cold sensitivity of the ATPase system. Ann Surg. 1972;175(1):111–7.

    Article  CAS  Google Scholar 

  100. McMurchie EJ, Raison JK, Cairncross KD. Temperature-induced phase changes in membranes of heart: a contrast between the thermal response of poikilotherms and homeotherms. Comp Biochem Physiol B. 1973;44(4):1017–26.

    Article  CAS  Google Scholar 

  101. Russ C, Lee JC. Effect of hypothermia on myocardial metabolism. Am J Phys. 1965;208:1253–8.

    Article  CAS  Google Scholar 

  102. Menasche P, Peynet J, Lariviere J, Tronc F, Piwnica A, Bloch G, et al. Does normothermia during cardiopulmonary bypass increase neutrophil-endothelium interactions? Circulation. 1994;90(5 Pt 2):II275–9.

    CAS  Google Scholar 

  103. Menasche P, Peynet J, Haeffner-Cavaillon N, Carreno MP, de Chaumaray T, Dillisse V, et al. Influence of temperature on neutrophil trafficking during clinical cardiopulmonary bypass. Circulation. 1995;92(9 Suppl):II334–40.

    Article  CAS  Google Scholar 

  104. Le Deist F, Menasche P, Kucharski C, Bel A, Piwnica A, Bloch G. Hypothermia during cardiopulmonary bypass delays but does not prevent neutrophil-endothelial cell adhesion. A clinical study. Circulation. 1995;92(9 Suppl):II354–8.

    Article  Google Scholar 

  105. Ohata T, Sawa Y, Kadoba K, Kagisaki K, Suzuki K, Matsuda H. Role of nitric oxide in a temperature dependent regulation of systemic vascular resistance in cardiopulmonary bypass. Eur J Cardiothorac Surg. 2000;18(3):342–7.

    Article  CAS  Google Scholar 

  106. Ulrich C, Harinck-de Weerd JE, Bakker NC, Jacz K, Doornbos L, de Ridder VA. Selective decontamination of the digestive tract with norfloxacin in the prevention of ICU-acquired infections: a prospective randomized study. Intensive Care Med. 1989;15(7):424–31.

    Article  CAS  Google Scholar 

  107. Rocha LA, Martin MJ, Pita S, Paz J, Seco C, Margusino L, et al. Prevention of nosocomial infection in critically ill patients by selective decontamination of the digestive tract. A randomized, double blind, placebo-controlled study. Intensive Care Med. 1992;18(7):398–404.

    Article  CAS  Google Scholar 

  108. Nathens AB, Marshall JC. Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg. 1999;134(2):170–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akar, A.R., İnan, B., Punjabi, K.P., Dernek, S. (2022). Systemic Inflammatory Response and Cardiopulmonary Bypass. In: Punjabi, P.P., Kyriazis, P.G. (eds) Essentials of Operative Cardiac Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-14557-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14557-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14556-8

  • Online ISBN: 978-3-031-14557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics