Skip to main content

Nutritional Anemia in Infants and Children

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

Abstract

Children are at high risk of nutritional anemia with a global prevalence of 42% in children <5 years of age. Iron deficiency anemia (IDA) is the most common cause of nutritional anemia in children and is associated with poor neurodevelopmental outcomes. There are large, physiological changes in biomarkers of iron status during early childhood, so age-specific reference intervals are needed. In order to prevent nutritional anemias, delayed umbilical cord clamping should be practiced, infant formula should be fortified with iron and other micronutrients, low birth weight infants should receive iron supplements, infants from 6 months of age and toddlers should receive an iron-rich diet, and adolescent girls should be screened for iron deficiency (ID). In areas with a high prevalence of anemia, iron supplements or point-of-use fortificants should be considered and infections should be prevented and treated. Excessive iron intakes in young children may cause adverse effects, so iron interventions should be targeted to high-risk groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 10 February 2023

    In Chapter 6, Author name Magnus Domelöf has been changed to Magnus Domellöf. The error appears in the Table of Content, chapter opening page, and running heads throughout the chapter.

References

  1. (WHO) WHO. 2016. https://data.worldbank.org/indicator/SH.ANM.CHLD.ZS.

  2. Neufeld LM, Beal T, Larson LM, Cattaneo FD. Global landscape of malnutrition in infants and young children. In: Michaelsen KF, Neufeld LM, Prentice AM, editors. Global landscape of nutrition challenges in infants and children. Basel, Switzerland: Karger AG; 2020.

    Google Scholar 

  3. Petry N, Olofin I, Hurrell RF, Boy E, Wirth JP, Moursi M, et al. The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: a systematic analysis of national surveys. Nutrients. 2016;8(11)

    Google Scholar 

  4. Engle-Stone R, Aaron GJ, Huang J, Wirth JP, Namaste SM, Williams AM, et al. Predictors of anemia in preschool children: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017.

    Google Scholar 

  5. Guez S, Chiarelli G, Menni F, Salera S, Principi N, Esposito S. Severe vitamin B12 deficiency in an exclusively breastfed 5-month-old Italian infant born to a mother receiving multivitamin supplementation during pregnancy. BMC Pediatr. 2012;12:85.

    Article  CAS  Google Scholar 

  6. Fewtrell M, Bronsky J, Campoy C, Domellöf M, Embleton N, Fidler Mis N, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119–32.

    Google Scholar 

  7. Sarna A, Porwal A, Ramesh S, Agrawal PK, Acharya R, Johnston R, et al. Characterisation of the types of anaemia prevalent among children and adolescents aged 1-19 years in India: a population-based study. Lancet Child Adolesc Health. 2020;4(7):515–25.

    Article  CAS  Google Scholar 

  8. Kumar T, Taneja S, Sachdev HPS, Refsum H, Yajnik CS, Bhandari N, et al. Supplementation of vitamin B12 or folic acid on hemoglobin concentration in children 6-36 months of age: a randomized placebo controlled trial. Clin Nutr. 2017;36(4):986–91.

    Article  CAS  Google Scholar 

  9. Huang Y, Wang L, Huo J, Wu Q, Wang W, Chang S, et al. Prevalence and causes of anaemia in children aged 6-23 months in rural Qinghai, China: findings from a cross-sectional study. BMJ Open. 2019;9(9):e031021.

    Article  Google Scholar 

  10. Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev. 2017;3:CD008524.

    Google Scholar 

  11. (WHO) WHO. Nutritional anaemias: tools for effective prevention and control. Geneva, Switzerland; 2017.

    Google Scholar 

  12. Andersson O, Hellstrom-Westas L, Andersson D, Domellöf M. Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: a randomised controlled trial. BMJ. 2011;343:d7157.

    Google Scholar 

  13. Park AM, Sanders TA, Maltepe E. Hypoxia-inducible factor (HIF) and HIF-stabilizing agents in neonatal care. Semin Fetal Neonatal Med. 2010;15(4):196–202.

    Article  Google Scholar 

  14. Lundgren P, Hellgren G, Pivodic A, Savman K, Smith LEH, Hellstrom A. Erythropoietin serum levels, versus anaemia as risk factors for severe retinopathy of prematurity. Pediatr Res. 2019;86(2):276–82.

    Article  CAS  Google Scholar 

  15. Lonnerdal B. Development of iron homeostasis in infants and young children. Am J Clin Nutr. 2017.

    Google Scholar 

  16. Oatley H, Borkhoff CM, Chen S, Macarthur C, Persaud N, Birken CS, et al. Screening for iron deficiency in early childhood using serum ferritin in the primary care setting. Pediatrics. 2018;142(6).

    Google Scholar 

  17. Akkermans MD, van der Horst-Graat JM, Eussen SR, van Goudoever JB, Brus F. Iron and vitamin D deficiency in healthy young children in western europe despite current nutritional recommendations. J Pediatr Gastroenterol Nutr. 2016;62(4):635–42.

    Article  CAS  Google Scholar 

  18. Domellöf M, Lonnerdal B, Dewey KG, Cohen RJ, Rivera LL, Hernell O. Sex differences in iron status during infancy. Pediatrics. 2002;110(3):545–52.

    Google Scholar 

  19. Kumari R, Bharti RK, Singh K, Sinha A, Kumar S, Saran A, et al. Prevalence of iron deficiency and iron deficiency anaemia in adolescent girls in a Tertiary Care Hospital. J Clin Diagn Res. 2017;11(8):BC04–BC6.

    Google Scholar 

  20. Domellöf M, Braegger C, Campoy C, et al. Iron requirements of infants and toddlers. J Pediatr Gastroenterol Nutr. 2014;58(1):119–29.

    Google Scholar 

  21. Domellöf M, Dewey KG, Lönnerdal B, Cohen RJ, Hernell O. The diagnostic criteria for iron deficiency in infants should be reevaluated. J Nutr. 2002;132(12):3680–6.

    Google Scholar 

  22. Dallman PR. Blood and blood forming tissues. Rudolph AM (Ed.), Pediatrics (ed 16), Appleton-Century-Crofts, Inc., Philadelphia (1977).

    Google Scholar 

  23. Larsson SM, Hillarp A, Hellström-Westas L, Domellöf M, Lundahl T, Andersson O. When age really matters; ferritin reference intervals during infancy revisited. Scand J Clin Lab Invest. 2019;79(8):590–4.

    Google Scholar 

  24. Nelson Textbook of Pediatrics - 15th edition. Behrman RE, editor: W.B. Saunders Co; 1996.

    Google Scholar 

  25. Suchdev PS, Williams AM, Mei Z, Flores-Ayala R, Pasricha SR, Rogers LM, et al. Assessment of iron status in settings of inflammation: challenges and potential approaches. Am J Clin Nutr. 2017.

    Google Scholar 

  26. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr. 2010;92(3):546–55.

    Article  CAS  Google Scholar 

  27. Prentice AM, Bah A, Jallow MW, Jallow AT, Sanyang S, Sise EA, et al. Respiratory infections drive hepcidin-mediated blockade of iron absorption leading to iron deficiency anemia in African children. Sci Adv. 2019;5(3):eaav9020.

    Article  CAS  Google Scholar 

  28. Petry N, Olofin I, Boy E, Donahue Angel M, Rohner F. The effect of low dose iron and zinc intake on child micronutrient status and development during the first 1000 days of life: a systematic review and meta-analysis. Nutrients. 2016;8(12).

    Google Scholar 

  29. Tam E, Keats EC, Rind F, Das JK, Bhutta AZA. Micronutrient supplementation and fortification interventions on health and development outcomes among children under-five in low- and middle-income countries: a systematic review and meta-analysis. Nutrients. 2020;12(2).

    Google Scholar 

  30. Pasricha SR, Hayes E, Kalumba K, Biggs BA. Effect of daily iron supplementation on health in children aged 4-23 months: a systematic review and meta-analysis of randomised controlled trials. Lancet Glob Health. 2013;1(2):e77–86.

    Article  Google Scholar 

  31. Beard JL. Why iron deficiency is important in infant development. J Nutr. 2008;138(12):2534–6.

    Article  CAS  Google Scholar 

  32. Georgieff MK. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans. 2008;36(Pt 6):1267–71.

    Article  CAS  Google Scholar 

  33. Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13(3):158–65.

    Article  Google Scholar 

  34. Zamora TG, Guiang SF 3rd, Widness JA, Georgieff MK. Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res. 2016;79(6):922–8.

    Article  CAS  Google Scholar 

  35. Lozoff B, Brittenham GM, Wolf AW, McClish DK, Kuhnert PM, Jimenez E, et al. Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics. 1987;79(6):981–95.

    Article  CAS  Google Scholar 

  36. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006;64(5 Pt 2):S34–43; discussion S72–91.

    Article  Google Scholar 

  37. Beard J. Recent evidence from human and animal studies regarding iron status and infant development. J Nutr. 2007;137(2):524S–30S.

    Article  CAS  Google Scholar 

  38. Lozoff B. Early iron deficiency has brain and behavior effects consistent with dopaminergic dysfunction. J Nutr. 2011;141(4):740S–6S.

    Article  CAS  Google Scholar 

  39. Pena-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;(7):CD004736.

    Google Scholar 

  40. Abraha I, Bonacini MI, Montedori A, Di Renzo GC, Angelozzi P, Micheli M, et al. Oral iron-based interventions for prevention of critical outcomes in pregnancy and postnatal care: an overview and update of systematic reviews. J Evid Based Med. 2019;12(2):155–66.

    Article  Google Scholar 

  41. Keats EC, Haider BA, Tam E, Bhutta ZA. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;3:CD004905.

    Google Scholar 

  42. Jayasinghe C, Polson R, van Woerden HC, Wilson P. The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring: a systematic review and meta-analysis. BMC Pediatr. 2018;18(1):150.

    Article  CAS  Google Scholar 

  43. Wang B, Zhan S, Gong T, Lee L. Iron therapy for improving psychomotor development and cognitive function in children under the age of three with iron deficiency anaemia. Cochrane Database Syst Rev. 2013(6):CD001444.

    Google Scholar 

  44. Szajewska H, Ruszczynski M, Chmielewska A. Effects of iron supplementation in nonanemic pregnant women, infants, and young children on the mental performance and psychomotor development of children: a systematic review of randomized controlled trials. Am J Clin Nutr. 2010;91(6):1684–90.

    Article  CAS  Google Scholar 

  45. Larson LM, Kubes JN, Ramirez-Luzuriaga MJ, Khishen S, et al. Effects of increased hemoglobin on child growth, development, and disease: a systematic review and meta-analysis. Ann N Y Acad Sci. 2019;1450(1):83–104.

    Google Scholar 

  46. Domellöf M. Meeting the iron needs of low and very low birth weight infants. Ann Nutr Metab. 2017;71(Suppl 3):16–23.

    Google Scholar 

  47. Lundström U, Siimes MA, Dallman PR. At what age does iron supplementation become necessary in low-birth-weight infants? J Pediatr. 1977;91(6):878–83.

    Article  Google Scholar 

  48. Oudgenoeg-Paz O, Mulder H, Jongmans MJ, van der Ham IJM, Van der Stigchel S. The link between motor and cognitive development in children born preterm and/or with low birth weight: a review of current evidence. Neurosci Biobehav Rev. 2017;80:382–93.

    Article  Google Scholar 

  49. Mills RJ, Davies MW. Enteral iron supplementation in preterm and low birth weight infants. Cochrane Database Syst Rev. 2012(3):CD005095.

    Google Scholar 

  50. Berglund SK, Chmielewska A, Lindberg J, Westrup B, Hagglof B, Norman M, et al. Effects of iron supplementation of low birth weight infants on cognition and behavior at 7 years-a randomized controlled trial. Pediatr Res. 2017.

    Google Scholar 

  51. Falkingham M, Abdelhamid A, Curtis P, Fairweather-Tait S, Dye L, Hooper L. The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J. 2010;9:4.

    Article  Google Scholar 

  52. Guo XM, Liu H, Qian J. Daily iron supplementation on cognitive performance in primary-school-aged children with and without anemia: a meta-analysis. Int J Clin Exp Med. 2015;8(9):16107–11.

    Google Scholar 

  53. Lam LF, Lawlis TR. Feeding the brain—the effects of micronutrient interventions on cognitive performance among school-aged children: a systematic review of randomized controlled trials. Clin Nutr. 2017;36(4):1007–14.

    Article  CAS  Google Scholar 

  54. Plessow R, Arora NK, Brunner B, Tzogiou C, Eichler K, Brugger U, et al. Social costs of iron deficiency anemia in 6-59-month-old children in India. PLoS One. 2015;10(8):e0136581.

    Article  Google Scholar 

  55. Berger HM, Mumby S, Gutteridge JM. Ferrous ions detected in iron-overloaded cord blood plasma from preterm and term babies: implications for oxidative stress. Free Radic Res. 1995;22(6):555–9.

    Article  CAS  Google Scholar 

  56. Domellöf M. Benefits and harms of iron supplementation in iron-deficient and iron-sufficient children. Nestle Nutr Workshop Ser Pediatr Program. 2010;65:153–62; discussion 62–5.

    Google Scholar 

  57. Ganz T. Iron and infection. Int J Hematol. 2018;107(1):7–15.

    Article  CAS  Google Scholar 

  58. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133–43.

    Article  CAS  Google Scholar 

  59. Richard SA, Zavaleta N, Caulfield LE, Black RE, Witzig RS, Shankar AH. Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am J Trop Med Hyg. 2006;75(1):126–32.

    Article  CAS  Google Scholar 

  60. Neuberger A, Okebe J, Yahav D, Paul M. Oral iron supplements for children in malaria-endemic areas. Cochrane Database Syst Rev. 2016;2:CD006589.

    Google Scholar 

  61. Ghanchi A, James PT, Cerami C. Guts, germs, and iron: a systematic review on iron supplementation, iron fortification, and diarrhea in children aged 4-59 months. Curr Dev Nutr. 2019;3(3):nzz005.

    Article  CAS  Google Scholar 

  62. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64(5):731–42.

    Article  CAS  Google Scholar 

  63. Simonyte Sjodin K, Domellöf M, Lagerqvist C, Hernell O, Lonnerdal B, Szymlek-Gay EA, et al. Administration of ferrous sulfate drops has significant effects on the gut microbiota of iron-sufficient infants: a randomised controlled study. Gut. 2018.

    Google Scholar 

  64. Weinberg ED. The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med. 1997;40(4):578–83.

    Article  CAS  Google Scholar 

  65. Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Winkler HC, Boekhorst J, et al. Iron-containing micronutrient powders modify the effect of oral antibiotics on the infant gut microbiome and increase post-antibiotic diarrhoea risk: a controlled study in Kenya. Gut. 2019;68(4):645–53.

    Article  CAS  Google Scholar 

  66. Cai C, Granger M, Eck P, Friel J. Effect of daily iron supplementation in healthy exclusively breastfed infants: a systematic review with meta-analysis. Breastfeed Med. 2017.

    Google Scholar 

  67. Agrawal S, Berggren KL, Marks E, Fox JH. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review. Nutr Rev. 2017.

    Google Scholar 

  68. Gahagan S, Delker E, Blanco E, Burrows R, Lozoff B. Randomized controlled trial of iron-fortified versus low-iron infant formula: developmental outcomes at 16 years. J Pediatr. 2019;212:124–30.e1.

    Article  CAS  Google Scholar 

  69. Zhao Y, Hou R, Zhu X, Ren L, Lu H. Effects of delayed cord clamping on infants after neonatal period: a systematic review and meta-analysis. Int J Nurs Stud. 2019;92:97–108.

    Article  Google Scholar 

  70. Mercer JS, Erickson-Owens DA, Deoni SCL, Dean DC 3rd, Collins J, Parker AB, et al. Effects of delayed cord clamping on 4-month ferritin levels, brain myelin content, and neurodevelopment: a randomized controlled trial. J Pediatr. 2018;203(266–72):e2.

    Google Scholar 

  71. Andersson O, Lindquist B, Lindgren M, Stjernqvist K, Domellöf M, Hellstrom-Westas L. Effect of delayed cord clamping on neurodevelopment at 4 years of age: a randomized clinical trial. JAMA Pediatr. 2015;169(7):631–8.

    Google Scholar 

  72. Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(1):1–18.

    Article  Google Scholar 

  73. Anton O, Jordan H, Rabe H. Strategies for implementing placental transfusion at birth: a systematic review. Birth. 2019;46(3):411–27.

    Article  Google Scholar 

  74. (WHO) WHO. Infant and Young Child Nutrition (WHA55.25); 2002. http://apps.who.int/gb/archive/pdf_files/WHA55/ewha5525.pdf.

  75. Obbagy JE, English LK, Psota TL, Wong YP, Butte NF, Dewey KG, et al. Complementary feeding and micronutrient status: a systematic review. Am J Clin Nutr. 2019;109(Supplement_7):852s–71s.

    Article  Google Scholar 

  76. Chantry CJ, Howard CR, Auinger P. Full breastfeeding duration and risk for iron deficiency in U.S. infants. Breastfeed Med. 2007;2(2):63–73.

    Google Scholar 

  77. Ziegler EE. Consumption of cow’s milk as a cause of iron deficiency in infants and toddlers. Nutr Rev. 2011;69(Suppl 1):S37–42.

    Article  Google Scholar 

  78. Wang X, Hui Z, Dai X, Terry PD, Zhang Y, Ma M, et al. Micronutrient-fortified milk and academic performance among chinese middle school students: a cluster-randomized controlled trial. Nutrients. 2017;9(3)

    Google Scholar 

  79. Scott SP, Murray-Kolb LE, Wenger MJ, Udipi SA, Ghugre PS, Boy E, et al. Cognitive performance in indian school-going adolescents is positively affected by consumption of iron-biofortified pearl millet: a 6-month randomized controlled efficacy trial. J Nutr. 2018;148(9):1462–71.

    Article  Google Scholar 

  80. Salam RA, Das JK, Ahmed W, Irfan O, Sheikh SS, Bhutta ZA. Effects of preventive nutrition interventions among adolescents on health and nutritional status in low- and middle-income countries: a systematic review and meta-analysis. Nutrients. 2019;12(1).

    Google Scholar 

  81. Sadighi J, Nedjat S, Rostami R. Systematic review and meta-analysis of the effect of iron-fortified flour on iron status of populations worldwide. Public Health Nutr. 2019;22(18):3465–84.

    Article  Google Scholar 

  82. Hess S, Tecklenburg L, Eichler K. Micronutrient fortified condiments and noodles to reduce anemia in children and adults—a literature review and meta-analysis. Nutrients. 2016;8(2):88.

    Article  Google Scholar 

  83. Daly A. Prevention of anaemia in inner-city toddlers by the use of a follow-on formula. Prof Care MotherChild. 1997;7(5):141–2, 6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Domellöf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domellöf, M., Berglund, S.K. (2022). Nutritional Anemia in Infants and Children. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics