Skip to main content

Interpretation of Biomarkers and Diagnosis of Nutritional Anaemias

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 540 Accesses

Abstract

Globally, the most common causes of anaemia are nutritional. Identifying the underlying cause of anaemia is important in ensuring a patient receives the correct treatment and at a population level to inform policy and guide interventions. This chapter focusses on the biomarkers available for the diagnosis of iron deficiency—the most prevalent nutritional deficiency worldwide—and vitamin B12 and folate deficiencies which also contribute to anaemia. Red cell morphology and red cell indices (such as the mean cell volume, mean cell haemoglobin and red cell distribution width) may be suggestive of one of these nutritional deficiencies as the cause of anaemia, with numerous specific biomarkers available to further aid in the diagnosis. Ferritin is the most reliable biomarker for the assessment of iron status, despite its inherent limitations which are discussed. Other biomarkers such as soluble transferrin receptor and transferrin saturation and emerging biomarkers such as hepcidin may be useful in some circumstances. Measurement of serum levels of vitamin B12 (total or active) and folate (or red cell folate) is the initial investigation performed for the megaloblastic anaemias of vitamin B12 and folate deficiencies, with additional biomarkers (homocysteine and methylmalonic acid) confirming tissue deficiency. This chapter discusses the interpretation of these biomarkers in the diagnosis of nutritional anaemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO the global prevalence of anaemia in 2011. Geneva: World Health Organisation; 2015.

    Google Scholar 

  2. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization; 2011. Available from: https://apps.who.int/iris/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf.

  3. Buttarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Lab Hematol. 2016;38(Suppl 1):123–32.

    Article  Google Scholar 

  4. Wang M. Iron deficiency and other types of anemia in infants and children. Am Fam Physician. 2016;93(4):270–8.

    Google Scholar 

  5. Bain BJ. Performing a blood count. In: Bain BJ, editor. Blood cells: a practical guide. 4th ed. Malden, MA: Blackwell Publishing; 2006. p. 20–60.

    Chapter  Google Scholar 

  6. Riley RS, Ben-Ezra JM, Goel R, Tidwell A. Reticulocytes and reticulocyte enumeration. J Clin Lab Anal. 2001;15(5):267–94.

    Article  CAS  Google Scholar 

  7. Briggs C, Bain BJ. Basic haematological techniques. In: Bain BJ, Bates I, Laffan MA, Mitchell Lews S, editors. Dacie and Lewis practical haematology. 11th ed. Elsevier Churchill Livingstone; 2012. p. 23–56.

    Chapter  Google Scholar 

  8. Piva E, Brugnara C, Spolaore F, Plebani M. Clinical utility of reticulocyte parameters. Clin Lab Med. 2015;35(1):133–63.

    Article  Google Scholar 

  9. Brugnara C. Reticulocyte cellular indices: a new approach in the diagnosis of anemias and monitoring of erythropoietic function. Crit Rev Clin Lab Sci. 2000;37(2):93–130.

    Article  CAS  Google Scholar 

  10. Bain BJ. Morphology of blood cells. In: Bain BJ, editor. Blood cells: a practical guide. 4th ed. Malden, MA: Blackwell Publishing; 2006. p. 61–174.

    Chapter  Google Scholar 

  11. Rehu M, Ahonen S, Punnonen K. The diagnostic accuracy of the percentage of hypochromic red blood cells (%HYPOm) and cellular hemoglobin in reticulocytes (CHr) in differentiating iron deficiency anemia and anemia of chronic diseases. Clin Chim Acta. 2011;412(19–20):1809–13.

    Article  CAS  Google Scholar 

  12. Bain BJ. Quantitative changes in blood cells. In: Bain BJ, editor. Blood cells: a practical guide. Fourth ed. MA, USA: Blackwell Publishing; 2006. p. 217–62.

    Chapter  Google Scholar 

  13. Bain BJ. Disorders of red cells and platelets. In: Bain BJ, editor. Blood cells: a practical guide. Fourth ed. MA, USA: Blackwell Publishing; 2006. p. 283–397.

    Chapter  Google Scholar 

  14. Bain BJ. Disorders of white cells. In: Bain BJ, editor. Blood cells: a practical guide. Fourth ed. MA, USA: Blackwell Publishing; 2006. p. 398–468.

    Chapter  Google Scholar 

  15. Minck S, Jayasuriya P, Leahy M, Gallagher T. Iron deficiency: translating new evidence into practice. Healthed Expert Monogr 2017;(16):1–11.

    Google Scholar 

  16. Hughes DA, Stuart-Smith SE, Bain BJ. How should stainable iron in bone marrow films be assessed? J Clin Pathol. 2004;57(10):1038–40.

    Article  CAS  Google Scholar 

  17. Worwood M, May A. Iron deficiency anaemia and iron overload. In: Bain BJ, Bates I, Laffan MA, Mitchell Lews S, editors. Dacie and Lewis practical haematology. 11th ed. Churchill Livingstone Elsevier; 2012. p. 175–200.

    Chapter  Google Scholar 

  18. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275(3):161–203.

    Article  Google Scholar 

  19. Hallberg L, Bengtsson C, Lapidus L, Lindstedt G, Lundberg PA, Hulten L. Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Haematol. 1993;85(4):787–98.

    Article  CAS  Google Scholar 

  20. Harju E, Pakarinen A, Larmi T. A comparison between serum ferritin concentration and the amount of bone marrow stainable iron. Scand J Clin Lab Invest. 1984;44(6):555–6.

    Article  CAS  Google Scholar 

  21. Milman N, Bangsbøll S, Pedersen NS, Visfeldt J. Serum ferritin in non-dialysis patients with chronic renal failure: relation to bone marrow iron stores. Scand J Haematol. 1983;30(4):337–44.

    Article  CAS  Google Scholar 

  22. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. Geneva: World Health Organisation; 2020.

    Google Scholar 

  23. Camaschella C. Iron deficiency: new insights into diagnosis and treatment. Hematology Am Soc Hematol Educ Program. 2015;2015:8–13.

    Article  Google Scholar 

  24. Iron studies standardised reporting protocol: The Royal College of Pathologists of Australasia; 2013. https://www.rcpa.edu.au/getattachment/554ba672-4d34-4e7c-b812-5741359bca78/Iron-Studies-Standardised-Reporting-Protocol.aspx.

  25. Pasricha S-RS, Flecknoe-Brown SC, Allen KJ, Gibson PR, McMahon LP, Olynyk JK, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. Med J Australia. 2010;193(9):525–32.

    Article  Google Scholar 

  26. Koorts A, Viljoen M. Acute phase proteins: ferritin and ferritin isoforms. 2011.

    Google Scholar 

  27. Namaste SM, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106(Suppl 1):359s–71s.

    Article  Google Scholar 

  28. Vigushin DM, Pepys MB, Hawkins PN. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest. 1993;91(4):1351–7.

    Article  CAS  Google Scholar 

  29. Pepys MB. C-REACTIVE PROTEIN FIFTY YEARS ON. Lancet. 1981;317(8221):653–7.

    Article  Google Scholar 

  30. Aronsen KF, Ekelund G, Kindmark C, Laurell CB. Sequential changes of plasma proteins after surgical trauma. Scand J Clin Lab Inv. 1972;29(sup124):127–36.

    Article  Google Scholar 

  31. Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41.

    Article  CAS  Google Scholar 

  32. Høyer K. Physiologic variations in the iron content of human blood serum. Acta Med Scand. 1944;119(6):562–76.

    Article  Google Scholar 

  33. Bullock GC, Delehanty LL, Talbot AL, Gonias SL, Tong WH, Rouault TA, et al. Iron control of erythroid development by a novel aconitase-associated regulatory pathway. Blood. 2010;116(1):97–108.

    Article  CAS  Google Scholar 

  34. Bainton DF, Finch CA. THE DIAGNOSIS OF IRON DEFICIENCY ANEMIA. Am J Med. 1964;37:62–70.

    Article  CAS  Google Scholar 

  35. Cogswell ME, Looker AC, Pfeiffer CM, Cook JD, Lacher DA, Beard JL, et al. Assessment of iron deficiency in US preschool children and nonpregnant females of childbearing age: National Health and Nutrition Examination Survey 2003-2006. Am J Clin Nutr. 2009;89(5):1334–42.

    Article  CAS  Google Scholar 

  36. Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111–37.

    Article  CAS  Google Scholar 

  37. Huebers HA, Beguin Y, Pootrakul P, Einspahr D, Finch CA. Intact transferrin receptors in human plasma and their relation to erythropoiesis. Blood. 1990;75(1):102–7.

    Article  CAS  Google Scholar 

  38. Flowers CH, Skikne BS, Covell AM, Cook JD. The clinical measurement of serum transferrin receptor. J Lab Clin Med. 1989;114(4):368–77.

    CAS  Google Scholar 

  39. Infusino I, Braga F, Dolci A, Panteghini M. Soluble Transferrin Receptor (sTfR) and sTfR/log ferritin index for the diagnosis of iron-deficiency anemia a meta-analysis. Am J Clin Pathol. 2012;138(5):642–9.

    Article  Google Scholar 

  40. Rees DC, Williams TN, Maitland K, Clegg JB, Weatherall DJ. Alpha thalassaemia is associated with increased soluble transferrin receptor levels. Br J Haematol. 1998;103(2):365–9.

    Article  CAS  Google Scholar 

  41. George J, Yiannakis M, Main B, Devenish R, Anderson CB, An U, et al. Genetic hemoglobin disorders, infection, and deficiencies of iron and vitamin A determine anemia in young Cambodian children. J Nutr. 2012;142:781–7.

    Article  CAS  Google Scholar 

  42. Cook JD, Skikne BS, Baynes RD. Serum transferrin receptor. Annu Rev Med. 1993;44:63–74.

    Article  CAS  Google Scholar 

  43. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387(10021):907–16.

    Article  CAS  Google Scholar 

  44. Labbé RF, Vreman HJ, Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin Chem. 1999;45(12):2060–72.

    Article  Google Scholar 

  45. Magge H, Sprinz P, Adams WG, Drainoni M-L, Meyers A. Zinc protoporphyrin and iron deficiency screening: trends and therapeutic response in an urban pediatric center. JAMA Pediatr. 2013;167(4):361–7.

    Article  Google Scholar 

  46. Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of Nutrition for Development (BOND)—iron review. J Nutr. 2018;148(suppl_1):1001S–67S.

    Article  Google Scholar 

  47. Yu KH. Effectiveness of zinc protoporphyrin/heme ratio for screening iron deficiency in preschool-aged children. Nutr Res Pract. 2011;5(1):40–5.

    Article  CAS  Google Scholar 

  48. Hirsch RE, Pulakhandam UR, Billett HH, Nagel RL. Blood zinc protoporphyrin is elevated only in sickle cell patients with low fetal hemoglobin. Am J Hematol. 1991;36(2):147–9.

    Article  CAS  Google Scholar 

  49. Tillyer ML, Tillyer CR. Zinc protoporphyrin assays in patients with alpha and beta thalassaemia trait. J Clin Pathol. 1994;47(3):205–8.

    Article  CAS  Google Scholar 

  50. Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;127(23):2809–13.

    Article  CAS  Google Scholar 

  51. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–7.

    Article  CAS  Google Scholar 

  52. Pasricha SR, Atkinson SH, Armitage AE, Khandwala S, Veenemans J, Cox SE, et al. Expression of the iron hormone hepcidin distinguishes different types of anemia in African children. Sci Transl Med. 2014;6(235):235re3.

    Article  Google Scholar 

  53. Theurl I, Aigner E, Theurl M, Nairz M, Seifert M, Schroll A, et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood. 2009;113(21):5277–86.

    Article  CAS  Google Scholar 

  54. Kroot JJ, Tjalsma H, Fleming RE, Swinkels DW. Hepcidin in human iron disorders: diagnostic implications. Clin Chem. 2011;57(12):1650–69.

    Article  CAS  Google Scholar 

  55. Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569–71.

    Article  CAS  Google Scholar 

  56. Aune ET, Diepeveen LE, Laarakkers CM, Klaver S, Armitage AE, Bansal S, et al. Optimizing hepcidin measurement with a proficiency test framework and standardization improvement. Clin Chem Lab Med. 2020.

    Google Scholar 

  57. Bain BJ, Clark DM, Wilkins BS. Disorders of erythropoiesis, granulopoiesis and thrombopoiesis. In: Bain BJ, Clark DM, Wilkins BS, editors. Bone marrow pathology. 4th ed. Wiley-Blackwell; 2010.

    Google Scholar 

  58. Markle HV, Greenway DC. Cobalamin. Crit Rev Cl Lab Sci. 1996;33(4):247–356.

    Article  CAS  Google Scholar 

  59. Allen LH, Miller JW, de Groot L, Rosenberg IH, Smith AD, Refsum H, et al. Biomarkers of Nutrition for Development (BOND): vitamin B-12 review. J Nutr. 2018;148(suppl_4):1995S–2027S.

    Article  Google Scholar 

  60. Nexo E, Hoffmann-Lücke E. Holotranscobalamin, a marker of vitamin B-12 status: analytical aspects and clinical utility. Am J Clin Nutr. 2011;94(1):359s–65s.

    Article  CAS  Google Scholar 

  61. Vitamin B12 and Folate testing—use and interpretation. 2015. https://www.rcpa.edu.au/getattachment/3f3667c3-34e7-47b7-93cf-e744ece8cfc7/Vitamin-and-B12-Folate-Testing-Use-and-Interpret.aspx.

  62. Morkbak AL, Hvas AM, Milman N, Nexo E. Holotranscobalamin remains unchanged during pregnancy. Longitudinal changes of cobalamins and their binding proteins during pregnancy and postpartum. Haematologica. 2007;92(12):1711–2.

    Article  CAS  Google Scholar 

  63. Hamilton MS, Blackmore S. Investigation of megaloblastic anaemia: cobalamin, folate and metabolite status. In: Bain BJ, Bates I, Laffan MA, Mitchell Lews S, editors. Dacie and Lewis practical haematology. 11th ed. Elsevier Churchill Livingstone; 2012. p. 201–28.

    Chapter  Google Scholar 

  64. Haynes BM, Pfeiffer CM, Sternberg MR, Schleicher RL. Selected physiologic variables are weakly to moderately associated with 29 biomarkers of diet and nutrition, NHANES 2003-2006. J Nutr. 2013;143(6):1001s–10s.

    Article  CAS  Google Scholar 

  65. Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF 3rd, Mills JL, et al. Biomarkers of nutrition for development-folate review. J Nutr. 2015;145(7):1636s–80s.

    Article  CAS  Google Scholar 

  66. Bailey LB. Folic acid. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW, editors. Handbook of vitamins. 4th ed. Boca Raton, FL: Taylor and Francis Group; 2007. p. 385–412.

    Google Scholar 

  67. Herbert V. Making sense of laboratory tests of folate status: folate requirements to sustain normality. Am J Hematol. 1987;26(2):199–207.

    Article  CAS  Google Scholar 

  68. Perry J, Lumb M, Laundy M, Reynolds EH, CHANARIN I. Role of vitamin B12 in folate coenzyme synthesis. Brit J Haematol. 1976;32(2):243–8.

    Article  CAS  Google Scholar 

  69. Devalia V, Hamilton MS, Molloy AM. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br J Haematol. 2014;166(4):496–513.

    Article  CAS  Google Scholar 

  70. Phekoo K, Williams Y, Schey SA, Andrews VE, Dudley JM, Hoffbrand AV. Folate assays: serum or red cell? J R Coll Physicians Lond. 1997;31(3):291–5.

    CAS  Google Scholar 

  71. Farrell CJ, Kirsch SH, Herrmann M. Red cell or serum folate: what to do in clinical practice? Clin Chem Lab Med. 2013;51(3):555–69.

    Article  CAS  Google Scholar 

  72. Galloway M, Rushworth L. Red cell or serum folate? Results from the National Pathology Alliance benchmarking review. J Clin Pathol. 2003;56(12):924–6.

    Article  CAS  Google Scholar 

  73. WHO. Guideline: optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects. Geneva: World Health Organization; 2015.

    Google Scholar 

  74. Mason JB. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr. 2003;133(Suppl 3):941s–7s.

    Article  CAS  Google Scholar 

  75. Jacob RA, Gretz DM, Taylor PC, James SJ, Pogribny IP, Miller BJ, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12.

    Article  CAS  Google Scholar 

  76. Green R, Miller JW. Vitamin B12. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW, editors. Handbook of vitamins. 4th ed. Taylor and Francis Group: Boca Raton, FL; 2007. p. 413–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Clucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clucas, D., Biggs, BA. (2022). Interpretation of Biomarkers and Diagnosis of Nutritional Anaemias. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics