Skip to main content

Cognitive and Behavioral Consequences of Iron Deficiency

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 530 Accesses

Abstract

Iron deficiency and iron deficiency anemia affect billions of women and children globally. Evidence from mechanistic studies in animal models indicates a clear association between iron and neurobiology and mounting evidence from human trials reveals an association between iron deficiency and alterations in cognition and behavior. This chapter reviews the cognitive and behavioral consequences of iron deficiency in children and women of reproductive age, focusing on randomized controlled trials that have been conducted over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 10 February 2023

    In Chapter 6, Author name Magnus Domelöf has been changed to Magnus Domellöf. The error appears in the Table of Content, chapter opening page, and running heads throughout the chapter.

References

  1. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, Regan M, Weatherall D, Chou DP, Eisele TP, Flaxman SR, Pullan RL, Brooker SJ, Murray CJL. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123:615–24.

    Article  CAS  Google Scholar 

  2. Lu C, Black MM, Richter LM. Risk of poor development in young children in low-income and middle-income countries: an estimation and analysis at the global, regional, and country level. Lancet Glob Health. 2016;4:e916–22.

    Article  Google Scholar 

  3. Murray-Kolb LE. Iron and brain functions. Curr Opin Clin Nutr Metab Care. 2013;16:703–7.

    Article  CAS  Google Scholar 

  4. McClung JP, Murray-Kolb LE. Iron nutrition and premenopausal women: effects of poor iron status on neuropsychological and physical performance. Annu Rev Nutr. 2013;33:271–88.

    Article  CAS  Google Scholar 

  5. Beard JL, Connor JR, Jones BC. Iron in the brain. Nutr Rev. 1993;51:157.

    Article  CAS  Google Scholar 

  6. Pinero DJ, Li NQ, Connor JR, Beard JL. Alterations in brain iron metabolism in response to dietary iron changes. J Nutr. 2000;130:254–63.

    Article  CAS  Google Scholar 

  7. Aoki S, Okada Y, Nishimura K, Barkovich AJ, Kjos BO, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology. 1989;172:381–5.

    Article  CAS  Google Scholar 

  8. Hill JM. The distribution of iron in the brain. In: Youdim MBH, editor. Brain iron: neurochemistry and behavioural aspects. London: Taylor & Francis; 1988. p. 1–24.

    Google Scholar 

  9. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–58.

    Article  CAS  Google Scholar 

  10. Pivina L, Semenova Y, Doşa MD, Dauletyarova M, Bjørklund G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J Mol Neurosci. 2019;68:1–10.

    Article  CAS  Google Scholar 

  11. Ferreira A, Neves P, Gozzelino R. Multilevel impacts of iron in the brain: the cross talk between neurophysiological mechanisms, cognition, and social behavior. Pharmaceuticals (Basel). 2019;12:126.

    Article  CAS  Google Scholar 

  12. Lozoff B, Klein NK, Nelson EC, McClish DK, Manuel M, Chacon ME. Behavior of infants with iron-deficiency anemia. Child Dev. 1998;69:24–36.

    Article  CAS  Google Scholar 

  13. Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131(2S-2):649S–66S; discussion 666S–668S

    Article  CAS  Google Scholar 

  14. Baumgartner J, Smuts CM, Malan L, Kvalsvig J, van Stuijvenberg ME, Hurrell RF, Zimmermann MB. Effects of iron and n-3 fatty acid supplementation, alone and in combination, on cognition in school children: a randomized, double-blind, placebo-controlled intervention in South Africa. Am J Clin Nutr. 2012;96:1327–38.

    Article  CAS  Google Scholar 

  15. Lozoff B, Castillo M, Clark MK, Smith BJ. Iron-fortified vs low-iron infant formula: developmental outcome at 10 years. Arch Pediatr Adolesc Med. 2012;166:208.

    Article  Google Scholar 

  16. Berglund SK, Westrup B, Hägglöf B, Hernell O, Domellöf M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics. 2013;131:47–55.

    Article  Google Scholar 

  17. Bouhouch RR, El-Fadeli S, Andersson M, Aboussad A, Chabaa L, Zeder C, Kippler M, Baumgartner J, Sedki A, Zimmermann MB. Effects of wheat-flour biscuits fortified with iron and EDTA, alone and in combination, on blood lead concentration, iron status, and cognition in children: a double-blind randomized controlled trial. Am J Clin Nutr. 2016;104:1318–26.

    Article  CAS  Google Scholar 

  18. Fiorentino M, Perignon M, Kuong K, de Groot R, Parker M, Burja K, Dijkhuizen MA, Sokjom S, Chamnan C, Berger J, Wieringa FT. Effect of multi-micronutrient-fortified rice on cognitive performance depends on premix composition and cognitive function tested: results of an effectiveness study in Cambodian schoolchildren. Public Health Nutr. 2018;21:816–27.

    Article  Google Scholar 

  19. Berglund SK, Chmielewska A, Starnberg J, Westrup B, Hägglöf B, Norman M, Domellöf M. Effects of iron supplementation of low-birth-weight infants on cognition and behavior at 7 years: a randomized controlled trial. Pediatr Res. 2018;83:111–8.

    Article  CAS  Google Scholar 

  20. Scott SP, Murray-Kolb LE, Wenger MJ, Udipi SA, Ghugre PS, Boy E, Haas JD. Cognitive performance in Indian school-going adolescents is positively affected by consumption of iron-biofortified pearl millet: a 6-month randomized controlled efficacy trial. J Nutr. 2018;148:1462–71.

    Article  Google Scholar 

  21. Santos DCC, Angulo-Barroso RM, Li M, Bian Y, Sturza J, Richards B, Lozoff B. Timing, duration, and severity of iron deficiency in early development and motor outcomes at 9 months. Eur J Clin Nutr. 2018;72:332–41.

    Article  CAS  Google Scholar 

  22. East P, Delker E, Blanco E, Encina P, Lozoff B, Gahagan S. Effect of infant iron deficiency on children’s verbal abilities: the roles of child affect and parent unresponsiveness. Matern Child Health J. 2019;23:1240–50.

    Article  Google Scholar 

  23. Gahagan S, Delker E, Blanco E, Burrows R, Lozoff B. Randomized controlled trial of iron-fortified versus low-iron infant formula: developmental outcomes at 16 years. J Pediatr. 2019;212:124–130.e1.

    Article  CAS  Google Scholar 

  24. Chang S, Wang L, Wang Y, Brouwer ID, Kok FJ, Lozoff B, Chen C. Iron-deficiency anemia in infancy and social emotional development in preschool-aged Chinese children. Pediatrics. 2011;127:e927–33.

    Article  Google Scholar 

  25. Lozoff B, Castillo M, Clark KM, Smith JB, Sturza J. Iron supplementation in infancy contributes to more adaptive behavior at 10 years of age. J Nutr. 2014;144:838–45.

    Article  CAS  Google Scholar 

  26. East P, Lozoff B, Blanco E, Delker E, Delva J, Encina P, Gahagan S. Infant iron deficiency, child affect, and maternal unresponsiveness: testing the long-term effects of functional isolation. Dev Psychol. 2017;53:2233–44.

    Article  Google Scholar 

  27. Doom JR, Richards B, Caballero G, Delva J, Gahagan S, Lozoff B. Infant iron deficiency and iron supplementation predict adolescent internalizing, externalizing, and social problems. J Pediatr. 2018;195:199–205.

    Article  CAS  Google Scholar 

  28. East P, Delker E, Lozoff B, Delva J, Castillo M, Gahagan S. Association among infant iron deficiency, childhood emotion and attention regulation, and adolescent problem behaviors. Child Dev. 2018;89:593–608.

    Article  Google Scholar 

  29. Chun-Ming C, Wang Y, Chang S. Effect of in-home fortification of complementary feeding on intellectual development of Chinese children. Biomed Environ Sci. 2010;23:83–91.

    Article  Google Scholar 

  30. Berglund S, Westrup B, Domellöf M. Iron supplements reduce the risk of iron deficiency anemia in marginally low birth weight infants. Pediatrics. 2010;126:e874–83.

    Google Scholar 

  31. Lozoff B, DeAndraca I, Castillo M, Smith JB, Walter T, Pino P. Behavioral and development effects of preventing iron-deficiency anemia in health full-term infants. Pediatrics. 2003;112:846–54.

    Article  Google Scholar 

  32. Murray-Kolb LE. Iron status and neuropsychological consequences in women of reproductive age: what do we know and where are we headed? J Nutr. 2011;141:747S–55S.

    Article  CAS  Google Scholar 

  33. Taylor EM, Crowe A, Morgan EH. Transferrin and iron uptake by the brain: effects of altered iron status. J Neurochem. 1991;57:1584–92.

    Article  CAS  Google Scholar 

  34. Malecki EA, Cook B, Devenyl AG, Beard JL, Connor JR. Transferrin is required for normal distributions of 59Fe and 54Mn in mouse brains. J Neurol Sci. 2000;170:112–8.

    Article  Google Scholar 

  35. Pinero DJ, Jones B, Beard JL. Alterations in brain iron metabolism in response to dietary iron changes. J Nutr. 2000;130:254–63.

    Article  CAS  Google Scholar 

  36. Blanton C. Improvements in iron status and cognitive function in young women consuming beef or non-beef lunches. Nutrients. 2014;9:90–110.

    Google Scholar 

  37. Wenger MJ, Murray-Kolb LE, Nevins JEH, Venkatramanan S, Reinhart GA, Wesley A, Haas JD. Consumption of a double-fortified salt affects perceptual, attentional, and mnemonic functioning in women in a randomized controlled trial in India. J Nutr. 2017;147:2297–308.

    Article  CAS  Google Scholar 

  38. Murray-Kolb LE, Wenger MJ, Scott SP, Rhoten SE, Lung’aho MG, Haas JD. Consumption of iron-biofortified beans positively affects cognitive performance in 18 to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial. J Nutr. 2017;147:109–17.

    Article  Google Scholar 

  39. Wenger MJ, Rhoten SE, Murray-Kolb LE, Scott SP, Boy E, Gahutu JB, Haas JD. Changes in iron status are related to changes in brain activity and behavior in Rwandan female university students: results from a randomized controlled efficacy trial involving iron-biofortified beans. J Nutr. 2019;149:687–97.

    Article  Google Scholar 

  40. Blanton CA, Green MW, Kretsch MJ. Body iron is associated with cognitive executive planning function in college women. Br J Nutr. 2013;109:906–13.

    Article  CAS  Google Scholar 

  41. Scott SP, Murray-Kolb LE. Iron status is associated with performance on executive functioning tasks in nonanemic young women. J Nutr. 2016;146:30–7.

    Article  CAS  Google Scholar 

  42. Cook RL, O’Dwyer NJ, Parker HM, Donges CE, Cheng HL, Steinbeck KS, Cox EP, Franklin JL, Garg ML, Rooney KB, O’Connor HT. Iron deficiency anemia, not iron deficiency, is associated with reduced attention in healthy young women. Nutrients. 2017;9:1216.

    Article  Google Scholar 

  43. Dziembowska I, Kwapisz J, IZdebski P, Zekanowska E. Mild iron deficiency may affect female endurance and behavior. Physiol Behav. 2019;205:44–50.

    Article  CAS  Google Scholar 

  44. Algarin C, Karunakaran KD, Reyes S, Morales C, Lozoff B, Peirano P, Biswal B. Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy. Front Aging Neurosci. 2017;9:54.

    Article  Google Scholar 

  45. Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in non-anemic, premenopausal women with low serum ferritin concentrations. Blood. 2011;118:3222–7.

    Article  CAS  Google Scholar 

  46. Vaucher P, Druais PL, Waldvogel S, Favrat B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ. 2012;184:1247–54.

    Article  Google Scholar 

  47. Sheikh M, Hantoushzadeh S, Shariat M, Farahani Z, Ebrahiminasab O. The efficacy of early iron supplementation on postpartum depression, a randomized double-blind placebo-controlled trial. Eur J Nutr. 2017;56:901–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Murray-Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murray-Kolb, L.E., Arcot, A. (2022). Cognitive and Behavioral Consequences of Iron Deficiency. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics