Skip to main content

Safety of Interventions to Reduce Nutritional Anemia

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

Abstract

Iron deficiency is estimated to cause more ill health and disability worldwide than any other nutrient deficiency. This underpins a public health drive to combat iron deficiency by interventions on multiple fronts. Many interventions such as increasing dietary diversity, introducing biofortified crops, or improving sanitation and hygiene have no safety concerns, but can have limited efficacy. Direct supplementation with iron in the form of tablets, syrups, or point-of-use micronutrient powders has greater efficacy, but has been associated with a range of adverse outcomes especially in the settings of poverty and poor hygiene where they are most needed. These adverse outcomes result from a battle for iron between humans and micro-organisms in which iron can enhance the virulence of numerous human pathogens. This chapter provides a high-level review of the existing evidence that iron interventions increase the likelihood of serious infections by bacteria, protozoa, viruses, or fungi, and whether they cause adverse perturbations of the gut microflora. We conclude that the evidence for possible harm is real, but that there are ways to ameliorate the risks, and that the benefits of iron interventions will generally outweigh any risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mwangi MN, Prentice AM, Verhoef H. Safety and benefits of antenatal oral iron supplementation in low-income countries: a review. Br J Haematol. 2017;177:884–95.

    Article  Google Scholar 

  2. Mwangi MN, Mzembe G, Moya E, Verhoef H. Iron deficiency anaemia in sub-Saharan Africa: a review of current evidence and primary care recommendations for high-risk groups. Lancet Haematol. 2021;8:e732–43.

    Article  CAS  Google Scholar 

  3. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27:215–37.

    Article  CAS  Google Scholar 

  4. Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38:431–58.

    Article  CAS  Google Scholar 

  5. Hurrell RF. Iron Fortification Practices and Implications for Iron Addition to Salt. J Nutr. 2021;151(Suppl 1):3S–14S.

    Article  Google Scholar 

  6. García-Casal MN, Layrisse M. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds. Arch Latinoam Nutr. 2001;51(1 Suppl 1):35–6.

    Google Scholar 

  7. Lau CKY, Krewulak KD, Vogel HJ. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol Rev. 2016;40:273–98.

    Article  CAS  Google Scholar 

  8. Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev. 2014;38:1202–34.

    Article  CAS  Google Scholar 

  9. Abergel RJ, Wilson MK, Arceneaux JEL, et al. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci U S A. 2006;103:18499–503.

    Article  CAS  Google Scholar 

  10. Golonka R, San Yeoh B, Vijay-Kumara M. The iron tug-of-war between bacterial siderophores and innate immunity. J Innate Immun. 2019;11:249–62.

    Article  CAS  Google Scholar 

  11. Raffatellu M, Bäumler AJ. Salmonella’s iron armor for battling the host and its microbiota. Gut Microbes. 2010;1:70–2.

    Article  Google Scholar 

  12. Wandersman C, Delepaire P. Haemophore functions revisited. Mol Microbiol. 2012;85:618–31.

    Article  CAS  Google Scholar 

  13. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6:e1000949.

    Article  Google Scholar 

  14. Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol. 2011;65:129–47.

    Article  CAS  Google Scholar 

  15. Ganz T. Iron and infection. Int J Hematol. 2018;107:7–15.

    Article  CAS  Google Scholar 

  16. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science. 2012;338:768–72.

    Article  CAS  Google Scholar 

  17. Lönnerdal B. Excess iron intake as a factor in growth, infections, and development of infants and young children. Am J Clin Nutr. 2017;106(Suppl 6):1681S–7S.

    Article  Google Scholar 

  18. Bullen JJ, Rogers HJ, Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972;1:69–75.

    Article  CAS  Google Scholar 

  19. De Sousa M, Brock JH, editors. Iron in immunity, cancer, and inflammation. New York: John Wiley & Sons; 1989.

    Google Scholar 

  20. Valenti P, Rosa L, Capobianco D, Stefania Lepanto M, Schiavi E, Cutone A, Paesano R, Mastromarino P. Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense. Front Immunol. 2018;9:376.

    Article  Google Scholar 

  21. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, Dhingra U, Kabole I, Deb S, Othman MK, Kabole FM. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367:133–43.

    Article  CAS  Google Scholar 

  22. Spottiswoode N, Fried M, Drakesmith H, Duffy PE. Implications of malaria on iron deficiency control strategies. Adv Nutr. 2012;3:570–8.

    Article  CAS  Google Scholar 

  23. Gwamaka M, Kurtis JD, Sorensen BE, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis. 2012;54:1137–44.

    Article  CAS  Google Scholar 

  24. Kabyemela ER, Fried M, Kurtis JD, Mutabingwa TK, Duffy PE. Decreased susceptibility to Plasmodium falciparum infection in pregnant women with iron deficiency. J Infect Dis. 2008;198:163–6.

    Article  Google Scholar 

  25. Veenemans J, Milligan P, Prentice AM, Schouten LRA, Inja N, van der Heijden AC, de Boer LCC, Jansen EJS, Koopmans AE, Enthoven WTM, et al. Effect of supplementation with zinc and other micronutrients on malaria in Tanzanian children: a randomised trial. PLoS Med. 2011;8:e1001125.

    Article  CAS  Google Scholar 

  26. Clark M, Fisher NC, Kasthuri R, Cerami Hand C. Parasite maturation and host serum iron influence the labile iron pool of erythrocyte stage Plasmodium falciparum. Br J Haematol. 2013;161:262–9.

    Article  CAS  Google Scholar 

  27. Goheen MM, Wegmüller R, Bah A, Darboe B, Danso E, Affara M, Gardner D, Patel JC, Prentice AM, Cerami C. Anemia offers stronger protection than sickle cell trait against the erythrocytic stage of falciparum malaria and this protection is reversed by iron supplementation. EBioMedicine. 2016;14:123–30.

    Article  CAS  Google Scholar 

  28. Goheen MM, Bah A, Wegmüller R, Verhoef H, Darboe B, Danso E, Prentice AM, Cerami C. Host iron status and erythropoietic response to iron supplementation determines susceptibility to the RBC stage of falciparum malaria during pregnancy. Sci Rep. 2017;7:17674.

    Article  Google Scholar 

  29. Bah A, Muhammad AK, Wegmuller R, Verhoef H, Goheen MM, Sanyang S, Danso E, Sise EA, Pasricha SR, Armitage AE, Drakesmith H, Cross JH, Moore SE, Cerami C, Prentice AM. Hepcidin-guided screen-and-treat interventions against iron-deficiency anaemia in pregnancy: a randomised controlled trial in The Gambia. Lancet Glob Health. 2019;7:e1564–74.

    Article  Google Scholar 

  30. World Health Organization. WHO guideline: use of multiple micronutrient powders for point-of-use fortification of foods consumed by infants and young children aged 6–23 months and children aged 2–12 years. Geneva: World Health Organization; 2016.

    Google Scholar 

  31. McDermid JM, van der Loeff MF, Jaye A, Hennig BJ, Bates C, Todd J, Sirugo G, Hill AV, Whittle HC, Prentice AM. Mortality in HIV infection is independently predicted by host iron status and SLC11A1 and HP genotypes, with new evidence of a gene-nutrient interaction. Am J Clin Nutr. 2009;90:225–33.

    Article  CAS  Google Scholar 

  32. McDermid JM, Hennig BJ, van der Sande M, Hill AV, Whittle HC, Jaye A, Prentice AM. Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: an 11-year retrospective cohort study. BMC Infect Dis. 2013;13:48.

    Article  Google Scholar 

  33. Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol. 2004;2:946–53.

    Article  CAS  Google Scholar 

  34. Weinberg ED. Iron and susceptibility to infectious disease. Science. 1974;184:952–6.

    Article  CAS  Google Scholar 

  35. Cross JH, Bradbury RS, Fulford AJ, Jallow AT, Wegmüller R, Prentice AM, Cerami C. Oral iron acutely elevates bacterial growth in human serum. Sci Rep. 2015;5:16670.

    Article  CAS  Google Scholar 

  36. Wegmüller R, Bah A, Kendall L, Goheen MM, Sanyang S, Danso E, Sise EA, Jallow A, Verhoef H, Jallow MW, Wathuo M, Armitage AE, Drakesmith H, Pasricha SR, Cross JH, Cerami C, Prentice, AM. Hepcidin-guided screen-and-treat interventions for iron-deficiency anaemia in young children: a proof-of-concept, randomised controlled trial in The Gambia. Lancet Global Health, 2022, in press.

    Google Scholar 

  37. Trousseau A. True, false chlorosis. Lectures on clinical medicine. Philadelphia, PA: Lindsay and Blakiston; 1872.

    Google Scholar 

  38. Murray MJ, Murray AB, Murray MB, Murray CJ. The adverse effect of iron repletion on the course of certain infections. BMJ. 1978;2:1113–5.

    Article  CAS  Google Scholar 

  39. Soofi S, Cousens S, Iqbal SP, Akhund T, Khan J, Ahmed I, Zaidi AKM, Bhutta ZA. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: a cluster-randomised trial. Lancet. 2013;382:29–40.

    Article  CAS  Google Scholar 

  40. Zlotkin S, Newton S, Aimone AM, Azindow I, Amenga-Etego S, Tchum K, Mahama E, Thorpe KE, Owusu-Agyei S. Effect of iron fortification on malaria incidence in infants and young children in Ghana: a randomized trial. JAMA. 2013;310:938–47.

    Article  CAS  Google Scholar 

  41. Unger SA, Drammeh S, Hasan J, Ceesay K, Sinjanka E, Beyai S, Sonko B, Dondeh BL, Fulford AJ, Moore SE, Prentice AM. Impact of fortified versus unfortified lipid-based supplements on morbidity and nutritional status: A randomised double-blind placebo-controlled trial in ill Gambian children. PLoS Med. 2017;14:e1002377.

    Article  Google Scholar 

  42. Paganini D, Uyoga MA, Zimmermann MB. Iron fortification of foods for infants and children in low-income countries: effects on the gut microbiome, gut inflammation, and diarrhea. Nutrients. 2016;8:494.

    Article  Google Scholar 

  43. Zimmermann MB, Chassard C, Rohner F, N’goran EK, Nindjin C, Dostal A, Utzinger J, Ghattas H, Lacroix C, Hurrell RF. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d’Ivoire. Am J Clin Nutr. 2010;92:1406–15.

    Article  CAS  Google Scholar 

  44. Jaeggi T, Kortman GAM, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, Njenga J, Mwangi A, Kvalsvig J, Lacroix C, Zimmermann MB. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731–42.

    Article  CAS  Google Scholar 

  45. Sjödin KS, Domellöf M, Lagerqvist C, Hernell O, Lönnerdal B, Szymlek-Gay EA, Sjödin A, West CE, Lind T. Administration of ferrous sulfate drops has significant effects on the gut microbiota of iron-sufficient infants: a randomised controlled study. Gut. 2019;68:2095–7.

    Google Scholar 

  46. Owolabi AJ, Senbanjo IO, Oshikoya KA, Boekhorst J, Eijlander RT, Kortman GAM, Hageman JHJ, Samuel F, Melse-Boonstra A, Schaafsma A. Multi-nutrient fortified dairy-based drink reduces anaemia without observed adverse effects on gut microbiota in anaemic malnourished Nigerian toddlers: a randomised dose–response study. Nutrients. 2021;13:1566.

    Article  Google Scholar 

  47. Rahman S, Kortman GAM, Boekhorst J, Lee P, Khan MR, Ahmed F. Effect of low-iron micronutrient powder (MNP) on the composition of gut microbiota of Bangladeshi children in a high-iron groundwater setting: a randomized controlled trial. Eur J Nutr. 2021;60:3423–36.

    Article  CAS  Google Scholar 

  48. Popovic A, Bourdon C, Wang PW, Guttman DS, Soofi S, Bhutta ZA, Bandsma RHJ, Parkinson J, Pell LG. Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut. Nat Commun. 2021;12:6729.

    Article  CAS  Google Scholar 

  49. Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J, Okoi C, Operario DJ, Uddin J, Ahmed S, Alonso PL, Antonio M, Becker SM, Blackwelder WC, Breiman RF, Faruque ASG, Fields B, Gratz J, Haque R, Hossain A, Hossain MJ, Jarju S, Qamar F, Talat Iqbal N, Kwambana B, Mandomando I, McMurry TL, Ochieng C, Ochieng JB, Ochieng M, Onyango C, Panchalingam S, Kalam A, Aziz F, Qureshi S, Ramamurthy T, Roberts JH, Saha D, Sow SO, Stroup SE, Sur D, Tamboura B, Taniuchi M, Tennant SM, Toema D, Wu Y, Zaidi A, Nataro JP, Kotloff KL, Levine MM, Houpt ER. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet. 2016;388:1291–301.

    Article  CAS  Google Scholar 

  50. Amour C, Gratz J, Mduma E, Svensen E, Rogawski ET, McGrath M, Seidman JC, McCormick BJJ, Shrestha S, Samie A, Mahfuz M, Qureshi S, Hotwani A, Babji S, Rengifo Trigoso D, Lima AAM, Bodhidatta L, Bessong P, Ahmed T, Shakoor S, Kang G, Kosek M, Guerrant RL, Lang D, Gottlieb M, Houpt ER, Platts-Mills JA, Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project (MAL-ED). Network Investigators. Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin Infect Dis. 2016;63:1171–9.

    Google Scholar 

  51. Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the gut microbiota: dangerous liaisons. Front Microbiol. 2021;11:618106.

    Article  Google Scholar 

  52. Fink G, D’Acremont V, Leslie HH, Cohen J. Antibiotic exposure among children younger than 5 years in low-income and middle-income countries: a cross-sectional study of nationally representative facility-based and household-based surveys. Lancet Infect Dis. 2020;20:179–87.

    Article  Google Scholar 

  53. Do NTT, Vu HTL, Nguyen CTK, Punpuing S, Khan WA, Gyapong M, Poku Asante K, Munguambe K, Gómez-Olivé FX, John-Langba J, Tran TK, Sunpuwan M, Sevene E, Nguyen HH, Ho PD, Abdul Matin M, Ahmed S, Mahbubul Karim M, Cambaco O, Afari-Asiedu S, Boamah-Kaali E, Ali Abdulai M, Williams J, Asiamah S, Amankwah G, Pomaa Agyekum M, Wagner F, Ariana P, Sigauque B, Tollman S, Rogier van Doorn H, Sankoh O, Kinsman J, Wertheim HFL. Community-based antibiotic access and use in six low-income and middle-income countries: a mixed-method approach. Lancet Glob. Health. 2021;9:e610–9.

    Google Scholar 

  54. Ghanchi A, James PT, Cerami C. Guts, germs, and iron: a systematic review on iron supplementation, iron fortification, and diarrhea in children aged 4–59 months. Curr Dev Nutr. 2019;3:nzz005.

    Article  CAS  Google Scholar 

  55. Mitra AK, Akramuzzaman SM, Fuchs GJ, Rahman MM, Mahalanabis D. Long-term oral supplementation with iron is not harmful for young children in a poor community of Bangladesh. J Nutr. 1997;127:1451–5.

    Article  CAS  Google Scholar 

  56. Suchdev PS, Jefferds ME, Dewey KG, Zlotkin S, Aguayo VM, de Pee S, Kraemer K, Greig A, Arabi M, De-Regil LM, Home Fortification Technical Advisory Group. Micronutrient powders and diarrhoea risk in infants and young children. Lancet Child Adolesc Health. 2021;5:e28–9.

    Article  Google Scholar 

  57. Srinivasan S, Fredricks DN. The human vaginal bacterial biota and bacterial vaginosis. Interdiscip Perspect Infect Dis. 2008;750479

    Google Scholar 

  58. Superti F, De Seta F. Warding off recurrent yeast and bacterial vaginal infections: lactoferrin and Lactobacilli. Microorganisms. 2020;8:130.

    Article  CAS  Google Scholar 

  59. Brabin L, Roberts SA, Gies S, Nelson A, Diallo S, Stewart CJ, et al. Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection - a double blind, randomised controlled trial in Burkina Faso. BMC Med. 2017;15:1–13.

    Article  Google Scholar 

  60. Pasricha SR, Gheorghe A, Sakr-Ashour F, Arcot A, Neufeld L, Murray-Kolb LE, Suchdev PS, Bode M. Net benefit and cost-effectiveness of universal iron-containing multiple micronutrient powders for young children in 78 countries: a microsimulation study. Lancet Glob Health. 2020;8:e1071–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Prentice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prentice, A.M., Cerami, C., Mwangi, M.N., Verhoef, H. (2022). Safety of Interventions to Reduce Nutritional Anemia. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics