Skip to main content

Iron and the Human Gut Microbiota

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 541 Accesses

Abstract

Fractional iron absorption from iron-fortified foods or oral iron supplements is generally low; often less than 10% of the iron dose is absorbed. Thus, the majority of iron passes unabsorbed into the colon where it might favor growth of potential enteropathogens, for which iron is crucial for replication and virulence, over important commensal “barrier” strains such as bifidobacteria and lactobacilli, which require little or no iron. Studies conducted in African infants and children have shown that in settings with poor hygiene and a high burden of infection and inflammation, iron fortification and supplementation adversely affect the gut microbiota: by decreasing beneficial bifidobacteria and lactobacilli, by increasing enteropathogens (e.g., pathogenic Escherichia coli), and by increasing gut inflammation. These adverse changes in the gut microbiota provide a plausible mechanism for the reported increased risk of diarrhea with provision of iron to infants and children in low-resource settings. Providing a low dose of iron that is highly bioavailable and co-provision of prebiotic galacto-oligosaccharides have recently been shown to be promising strategies to mitigate adverse effects of iron on the infant gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Advances in nutrition (Bethesda, Md). 2017;8(1):126–36. https://doi.org/10.3945/an.116.013961.

    Article  CAS  Google Scholar 

  2. Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, et al. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev. 2017;75(1):49–60. https://doi.org/10.1093/nutrit/nuw055.

    Article  Google Scholar 

  3. Puntarulo S. Iron, oxidative stress and human health. Mol Asp Med. 2005;26(4–5):299–312. https://doi.org/10.1016/j.mam.2005.07.001.

    Article  CAS  Google Scholar 

  4. Brittenham GM, Andersson M, Egli I, Foman JT, Zeder C, Westerman ME, et al. Circulating non-transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: a randomized study. Am J Clin Nutr. 2014;100(3):813–20. https://doi.org/10.3945/ajcn.113.081505.

    Article  CAS  Google Scholar 

  5. Tondeur MC, Schauer CS, Christofides AL, Asante KP, Newton S, Serfass RE, et al. Determination of iron absorption from intrinsically labeled microencapsulated ferrous fumarate (sprinkles) in infants with different iron and hematologic status by using a dual-stable-isotope method. Am J Clin Nutr. 2004;80(5):1436–44. https://doi.org/10.1093/ajcn/80.5.1436.

    Article  CAS  Google Scholar 

  6. Cook JD, Reddy MB. Efficacy of weekly compared with daily iron supplementation. Am J Clin Nutr. 1995;62(1):117–20. https://doi.org/10.1093/ajcn/62.1.117.

    Article  CAS  Google Scholar 

  7. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, NY). 2004;306(5704):2090–3. https://doi.org/10.1126/science.1104742.

    Article  CAS  Google Scholar 

  8. Kortman GA, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev. 2014;38(6):1202–34. https://doi.org/10.1111/1574-6976.12086.

    Article  CAS  Google Scholar 

  9. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27(2–3):215–37. https://doi.org/10.1016/s0168-6445(03)00055-x.

    Article  CAS  Google Scholar 

  10. Kramer J, Ozkaya O. Bacterial siderophores in community and host interactions. 2020;18(3):152–63. https://doi.org/10.1038/s41579-019-0284-4.

    Article  CAS  Google Scholar 

  11. Aisen P, Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–93. https://doi.org/10.1146/annurev.bi.49.070180.002041.

    Article  CAS  Google Scholar 

  12. Carrano CJ, Raymond KN. Ferric ion sequestering agents. 2. Kinetics and mechanism of iron removal from transferrin by enterobactin and synthetic tricatechols. J Am Chem Soc. 1979;101(18):5401–4.

    Article  CAS  Google Scholar 

  13. Bjarnason J, Southward CM, Surette MG. Genomic profiling of iron-responsive genes in salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol. 2003;185(16):4973–82. https://doi.org/10.1128/jb.185.16.4973-4982.2003.

    Article  CAS  Google Scholar 

  14. Troxell B, Hassan HM. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol. 2013;3:59. https://doi.org/10.3389/fcimb.2013.00059.

    Article  CAS  Google Scholar 

  15. Kortman GA, Boleij A, Swinkels DW, Tjalsma H. Iron availability increases the pathogenic potential of salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One. 2012;7(1):e29968. https://doi.org/10.1371/journal.pone.0029968.

    Article  CAS  Google Scholar 

  16. Rivera-Chavez F, Mekalanos JJ. Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature. 2019;572(7768):244–8. https://doi.org/10.1038/s41586-019-1453-3.

    Article  CAS  Google Scholar 

  17. Ho TD, Ellermeier CD. Ferric uptake regulator fur control of putative iron acquisition systems in Clostridium difficile. J Bacteriol. 2015;197(18):2930–40. https://doi.org/10.1128/jb.00098-15.

    Article  CAS  Google Scholar 

  18. Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, et al. Iron regulation in Clostridioides difficile. Front Microbiol. 2018;9:3183. https://doi.org/10.3389/fmicb.2018.03183.

    Article  Google Scholar 

  19. Konikoff MR, Denson LA. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12(6):524–34.

    Article  Google Scholar 

  20. Nakashige TG, Zhang B, Krebs C, Nolan EM. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol. 2015;11(10):765–71. https://doi.org/10.1038/nchembio.1891.

    Article  CAS  Google Scholar 

  21. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432(7019):917–21. https://doi.org/10.1038/nature03104.

    Article  CAS  Google Scholar 

  22. Weinberg ED. The lactobacillus anomaly: total iron abstinence. Perspect Biol Med. 1997;40(4):578–83.

    Article  CAS  Google Scholar 

  23. Vazquez-Gutierrez P, Lacroix C, Jaeggi T, Zeder C, Zimmerman MB, Chassard C. Bifidobacteria strains isolated from stools of iron deficient infants can efficiently sequester iron. BMC Microbiol. 2015;15:3. https://doi.org/10.1186/s12866-014-0334-z.

    Article  CAS  Google Scholar 

  24. Vazquez-Gutierrez P, de Wouters T, Werder J, Chassard C, Lacroix C. High iron-sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro. Front Microbiol. 2016;7:1480. https://doi.org/10.3389/fmicb.2016.01480.

    Article  Google Scholar 

  25. Pandey A, Bringel F, Meyer J. Iron requirement and search for siderophores in lactic acid bacteria. Appl Microbiol Biotechnol. 1994;40:735–9.

    Article  CAS  Google Scholar 

  26. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int J Med Microbiol. 2006;296(8):513–20. https://doi.org/10.1016/j.ijmm.2006.06.003.

    Article  CAS  Google Scholar 

  27. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013;14(1):26–37. https://doi.org/10.1016/j.chom.2013.06.007.

    Article  CAS  Google Scholar 

  28. Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature. 2016;540(7632):280–3. https://doi.org/10.1038/nature20557.

    Article  CAS  Google Scholar 

  29. Bessman NJ, Mathieu JRR, Renassia C, Zhou L, Fung TC. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science. 2020;368(6487):186–9. https://doi.org/10.1126/science.aau6481.

    Article  CAS  Google Scholar 

  30. Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10. https://doi.org/10.1038/nri3863.

    Article  CAS  Google Scholar 

  31. Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 2020;31(1):115–30.e6. https://doi.org/10.1016/j.cmet.2019.10.005.

    Article  CAS  Google Scholar 

  32. Shanmugam NK, Trebicka E, Fu LL, Shi HN, Cherayil BJ. Intestinal inflammation modulates expression of the iron-regulating hormone hepcidin depending on erythropoietic activity and the commensal microbiota. J Immunol (Baltimore, Md : 1950). 2014;193(3):1398–407. https://doi.org/10.4049/jimmunol.1400278.

    Article  CAS  Google Scholar 

  33. WHO. Guideline: use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age. Geneva: World Health Organization; 2011.

    Google Scholar 

  34. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64(5):731–42. https://doi.org/10.1136/gutjnl-2014-307720.

    Article  CAS  Google Scholar 

  35. Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Moretti D, Barth-Jaeggi T, et al. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut. 2017;66(11):1956–67. https://doi.org/10.1136/gutjnl-2017-314418.

    Article  CAS  Google Scholar 

  36. Tang M, Frank DN, Hendricks AE, Ir D, Esamai F, Liechty E, et al. Iron in micronutrient powder promotes an unfavorable gut microbiota in Kenyan infants. Nutrients. 2017;9(7). https://doi.org/10.3390/nu9070776.

  37. Rogawski ET, Platts-Mills JA, Seidman JC, John S, Mahfuz M, Ulak M, et al. Use of antibiotics in children younger than two years in eight countries: a prospective cohort study. Bull World Health Organ. 2017;95(1):49–61. https://doi.org/10.2471/blt.16.176123.

    Article  Google Scholar 

  38. De-Regil LM, Suchdev PS, Vist GE, Walleser S, Pena-Rosas JP. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age (review). Evid Based Child Health. 2013;8(1):112–201. https://doi.org/10.1002/ebch.1895.

    Article  Google Scholar 

  39. Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Winkler HC, Boekhorst J, et al. Iron-containing micronutrient powders modify the effect of oral antibiotics on the infant gut microbiome and increase post-antibiotic diarrhoea risk: a controlled study in Kenya. Gut. 2019;68(4):645–53. https://doi.org/10.1136/gutjnl-2018-317399.

    Article  CAS  Google Scholar 

  40. Cheung YB, Xu Y, Mangani C, Fan YM, Dewey KG, Salminen SJ, et al. Gut microbiota in Malawian infants in a nutritional supplementation trial. Trop Med Int Health. 2016;21(2):283–90. https://doi.org/10.1111/tmi.12650.

    Article  Google Scholar 

  41. Kamng’ona AW, Young R, Arnold CD, Patson N, Jorgensen JM, Kortekangas E, et al. Provision of lipid-based nutrient supplements to mothers during pregnancy and 6 months postpartum and to their infants from 6 to 18 months promotes infant gut microbiota diversity at 18 months of age but not microbiota maturation in a rural Malawian setting: secondary outcomes of a randomized trial. J Nutr. 2020;150(4):918–28. https://doi.org/10.1093/jn/nxz298.

    Article  Google Scholar 

  42. Simonyte Sjodin K, Domellof M, Lagerqvist C, Hernell O, Lonnerdal B, Szymlek-Gay EA, et al. Administration of ferrous sulfate drops has significant effects on the gut microbiota of iron-sufficient infants: a randomised controlled study. Gut. 2019;68(11):2095–7. https://doi.org/10.1136/gutjnl-2018-316988.

    Article  CAS  Google Scholar 

  43. Tang M, Frank DN, Sherlock L, Ir D, Robertson CE, Krebs NF. Effect of vitamin E with therapeutic iron supplementation on iron repletion and gut microbiome in US iron deficient infants and toddlers. J Pediatr Gastroenterol Nutr. 2016;63(3):379–85. https://doi.org/10.1097/mpg.0000000000001154.

    Article  CAS  Google Scholar 

  44. Zimmermann MB, Chassard C, Rohner F, N’Goran EK, Nindjin C, Dostal A, et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in cote d’Ivoire. Am J Clin Nutr. 2010;92(6):1406–15. https://doi.org/10.3945/ajcn.110.004564.

    Article  CAS  Google Scholar 

  45. Dostal A, Baumgartner J, Riesen N, Chassard C, Smuts CM, Zimmermann MB, et al. Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in south African children. Br J Nutr. 2014;112(4):547–56. https://doi.org/10.1017/s0007114514001160.

    Article  CAS  Google Scholar 

  46. WHO. Nutritional anaemias: tools for effective prevention and control. Geneva: World Health Organization; 2017.

    Google Scholar 

  47. Dekker Nitert M, Gomez-Arango LF, Barrett HL, McIntyre HD, Anderson GJ, Frazer DM, et al. Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. Br J Nutr. 2018;120(3):283–9. https://doi.org/10.1017/s0007114518001149.

    Article  CAS  Google Scholar 

  48. Paganini D, Uyoga MA, Kortman GAM, Boekhorst J, Schneeberger S, Karanja S, et al. Maternal human milk oligosaccharide profile modulates the impact of an intervention with iron and galacto-oligosaccharides in kenyan infants. Nutrients. 2019;11:11. https://doi.org/10.3390/nu11112596.

    Article  CAS  Google Scholar 

  49. Goldberg ND. Iron deficiency anemia in patients with inflammatory bowel disease. Clin Exp Gastroenterol. 2013;6:61–70. https://doi.org/10.2147/ceg.s43493.

    Article  CAS  Google Scholar 

  50. Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017;66(5):863–71. https://doi.org/10.1136/gutjnl-2015-309940.

    Article  CAS  Google Scholar 

  51. Neuberger A, Okebe J, Yahav D, Paul M. Oral iron supplements for children in malaria-endemic areas. Cochrane Database Syst Rev. 2016;2:CD006589. https://doi.org/10.1002/14651858.CD006589.pub4.

    Article  Google Scholar 

  52. WHO. The global burden of disease: 2004 update. Geneva: World Health Organization. p. 2008.

    Google Scholar 

  53. Paganini D, Uyoga MA, Zimmermann MB. Iron fortification of foods for infants and children in low-income countries: effects on the gut microbiome, gut inflammation, and diarrhea. Nutrients. 2016;8(8) https://doi.org/10.3390/nu8080494.

  54. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet (London, England). 2013;382(9888):209–22. https://doi.org/10.1016/s0140-6736(13)60844-2.

    Article  Google Scholar 

  55. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12. https://doi.org/10.1093/jn/125.6.1401.

    Article  CAS  Google Scholar 

  56. Hopkins MJ, Macfarlane GT. Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Appl Environ Microbiol. 2003;69(4):1920–7. https://doi.org/10.1128/aem.69.4.1920-1927.2003.

    Article  CAS  Google Scholar 

  57. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl 2):S1–63.

    Article  CAS  Google Scholar 

  58. Chen K, Chai L, Li H, Zhang Y, Xie HM, Shang J, et al. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition (Burbank, Los Angeles County, Calif). 2016;32(2):222–7. https://doi.org/10.1016/j.nut.2015.08.010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paganini, D., Uyoga, M.A., Zimmermann, M.B. (2022). Iron and the Human Gut Microbiota. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics