Skip to main content

Genetic Hemoglobin Disorders and Their Association with Hemoglobin Concentration and Biomarkers of Nutritional Anemia

  • Chapter
  • First Online:
Nutritional Anemia

Abstract

Genetic hemoglobin disorders are autosomal-recessive conditions that can result in a decreased production of hemoglobin or structurally variant forms of hemoglobin. Genetic hemoglobin disorders are generally categorized as either structural hemoglobin variants (e.g., Hb S or sickle cell) or thalassemia (i.e., α- or β-thalassemia). It is well-established that individuals with some genetic hemoglobin disorders have lower hemoglobin concentrations regardless of iron status. Certain genetic hemoglobin disorders are thought to cause higher red blood cell turnover, due to chronic hemolysis and increased erythropoiesis seen in hereditary hemolytic conditions. Requirements of nutrients involved in erythropoiesis, including iron, soluble transferrin receptor (sTfR), zinc, folate, vitamins B6 and B12, and riboflavin are therefore thought to be increased in individuals with genetic hemoglobin disorders, especially if dietary intake is marginal. Conversely, deficiencies of these micronutrients can contribute to significant alterations in erythropoiesis. We systematically reviewed the literature for studies that measured ferritin, sTfR, zinc, folate, vitamin B12, vitamin B6, and riboflavin concentrations in individuals with genetic hemoglobin disorders as compared to controls. Overall, in study populations with genetic hemoglobin disorders, concentrations of mean or median ferritin and sTfR were higher compared with control study populations, and concentrations of zinc were lower than compared with control study populations. Vitamins B12 and B6 tended to be either lower or similar in those with genetic hemoglobin disorders as compared to control populations. For folate, we found discrepancies in the literature as to whether or not concentrations differed among those with and without genetic hemoglobin disorders, which may be attributable to routine prophylactic high-dose folic acid supplementation in some populations. Erythrocyte glutathione reductase activation coefficients (EGRac), an indicator of functional riboflavin deficiency, tended to be either higher or similar in those with genetic hemoglobin disorders as compared to control populations; however, data on this nutrient are limited to only four studies. Continuing advancements in the medical care (e.g. hydroxyurea therapy or B-vitamin supplementation) may further influence B-vitamin status in individuals with hemoglobinopathies. In conclusion, in individuals with genetic hemoglobin disorders, anemia may persist regardless of iron status, and iron or other nutritional interventions may not be effective to reduce, treat or prevent anemia in these individuals. Further, in individuals with some genetic hemoglobin disorders, biomarkers of nutritional anemia may not accurately represent an individual’s nutritional status and nutritional deficiency prevalence may be falsely underestimated or overestimated in populations with genetic hemoglobin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greer JP, Foerster J, Rodgers GM, Paraskevas F. Wintrobe’s clinical hematology. 12th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  2. Bain BJ. Haemoglobinopathy diagnosis. 2nd ed. Oxford: Blackwell Publishing Ltd.; 2006.

    Book  Google Scholar 

  3. Weatherall D, Akinyanju O, Fucharoen S, et al. Inherited disorders of hemoglobin. In: Jamison DT, Breman JG, Measham AR, et al., editors. Disease control priorities in developing countries [internet]. 2nd ed. New York: Oxford University Press; 2006. https://www.ncbi.nlm.nih.gov/books/NBK11727/.

    Google Scholar 

  4. King A, Higgs D. Potential new approaches to the management of the Hb Bart’s hydrops fetalis syndrome: the most severe form of α-thalassemia. Hematol Am Soc Hematol Educ Progr. 2018;1:353–60.

    Article  Google Scholar 

  5. Lal A, Wong T, Andrews J, Balasa V, Chung J, Forester C, Ikeda A, Keel S, Pagano M, Puthenveetil G, et al. Transfusion practices and complications in thalassemia. Transfusion. 2018;58:2826–35.

    Article  Google Scholar 

  6. Allison A. Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J. 1954;1:290–4.

    Article  CAS  Google Scholar 

  7. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;9861:142–51.

    Article  Google Scholar 

  8. Piel F, Steinberg M, Rees D. Sickle cell disease. Lancet. 2017;390:311–23.

    Article  Google Scholar 

  9. Wastnedge E, Waters D, Patel S, Morrison K, Goh MY, Adeloye D, Rudan I. The global burden of sickle cell disease in children under five years of age: a systematic review and meta-analysis. J Glob Health. 2018;8:1–9.

    Article  Google Scholar 

  10. Rees D, Styles L, Vichinsky E, Clegg J, Weatherall D. The hemoglobin E syndromes. Ann N Y Acad Sci. 1998;850:334–43.

    Article  CAS  Google Scholar 

  11. Piel F, Weatheral D. The α-thalassemias. N Engl J Med. 2014;371:1908–16.

    Article  Google Scholar 

  12. Kattamis A, Forni G, Aydinok Y, Viprakasit V. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol. 2020;105:692–703.

    Article  Google Scholar 

  13. Karakochuk CD, Whitfield KC, Barr SI, Lamers Y, Devlin AM, Vercauteren SM, Kroeun H, Talukder A, McLean J, Green TJ. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural Prey Veng, Cambodia. J Nutr. 2015;145:134–42.

    Article  CAS  Google Scholar 

  14. Williams BA, Mayer C, McCartney H, Devlin AM, Lamers Y, Vercauteren SM, Wu JK, Karakochuk CD. Detectable unmetabolized folic acid and elevated folate concentrations in folic acid-supplemented Canadian children with sickle cell disease. Front Nutr. 2021;8:642306.

    Article  Google Scholar 

  15. Zimmermann MB, Fucharoen S, Winichagoon P, Sirankapracha P, Zeder C, Gowachirapant S, Judprasong K, Tanno T, Miller JL, Hurrell RF. Iron metabolism in heterozygotes for hemoglobin E (HbE), alpha-thalassemia 1, or beta-thalassemia and in compound heterozygotes for HbE/beta-thalassemia. Am J Clin Nutr. 2008;88:1026–31.

    Article  CAS  Google Scholar 

  16. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  Google Scholar 

  17. Baumann H, Gauldie J. The acute phase response. Immunol Today. 1994;15:74–80.

    Article  CAS  Google Scholar 

  18. Conran N, Belcher J. Inflammation in sickle cell disease. Clin Hemorheol Microcirc. 2018;68:263–99.

    Article  CAS  Google Scholar 

  19. Suchdev PS, Williams AM, Mei Z, Flores-Ayala R, Pasricha S-R, Rogers LM, Namaste SM. Assessment of iron status in settings of inflammation: challenges and potential approaches. Am J Clin Nutr. 2017;106:1626S–33S.

    Article  Google Scholar 

  20. Schümann K, Ettle T, Szegner B, Elsenhans B, Solomons NW. On risks and benefits of iron supplementation recommendations for iron intake revisited. J Trace Elem Med Biol. 2007;21:147–68.

    Article  Google Scholar 

  21. Baldi A, Larson L, Pasricha S. Balancing safety and potential for impact in universal iron interventions. Nestle Nutr Inst Work Ser. 2020;93:51–62.

    Article  Google Scholar 

  22. Karakochuk CD. Iron supplementation in predominantly iron-replete populations: is there an emerging concern? Sight Life Mag. 2016:44–51.

    Google Scholar 

  23. Cook J, Dassenko S, Skikne B. Serum transferrin receptor as an index of iron absorption. Br J Haematol. 1990;75:603–9.

    Article  CAS  Google Scholar 

  24. Mast AE, Blinder MA, Gronowski AM, Chumley C, Scott MG. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem. 1998;44:45–51.

    Article  CAS  Google Scholar 

  25. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74.

    Article  CAS  Google Scholar 

  26. King JC, Brown KH, Gibson RS, Krebs NF, Lowe NM, Siekmann JH, Raiten DJ. Biomarkers of nutrition for development (BOND): zinc review. J Nutr. 2016;146:858S–85S.

    Article  Google Scholar 

  27. Mabayoje JO. Sickle-cell anaemia; a major disease in West Africa. Br Med J. 1956;1:194–6.

    Article  CAS  Google Scholar 

  28. Watson-Williams EJ. Folic acid deficiency in sickle-cell anaemia. East Afr Med J. 1962;39:213–21.

    CAS  Google Scholar 

  29. Lindenbaum J, Klipstein FA. Folic acid deficiency in sickle-cell anemia. N Engl J Med. 1963;269:875–82.

    Article  CAS  Google Scholar 

  30. Tso S. Significance of subnormal red-cell folate in thalassaemia. J Clin Pathol. 1976;29:140–3.

    Article  CAS  Google Scholar 

  31. Liu Y. Folic acid deficiency in sickle cell anaemia. Scand J Haematol. 1975;14:71–9.

    Article  CAS  Google Scholar 

  32. Liu YK. Folate deficiency in children with sickle cell anemia: lack of relationship between folate deficiency and growth retardation in sickle cell anemia. Am J Dis Child. 1974;127:389–93.

    Article  CAS  Google Scholar 

  33. Azzam M, Attalla S. Serum folate levels in patients with chronic hemolytic anemia on regular folic acid supplementation before and after dose modification. Indian Pediatr. 2019;56:845–8.

    Article  Google Scholar 

  34. Tripathi G, Kalra M, Mahajan A. Folate supplementation in transfusion-dependent thalassemia: do we really need such high doses? Indian J Med Paediatr Oncol. 2016;37:305.

    Article  Google Scholar 

  35. Al-Saqladi A-WM, Harper G, Delpisheh A, Fijnvandraat K, Bin-Gadeem HA, Brabin BJ. Frequency of the MTHFR C677T polymorphism in Yemeni children with sickle cell disease. Hemoglobin. 2010;34:67–77.

    Article  CAS  Google Scholar 

  36. Paniz C, Lucena MR, Bertinato JF, dos Santos MNN, Gomes GW, Figueiredo MS, de Fátima Sonati M, Blaia-D Avila VLN, Green R, Guerra-Shinohara EM. Serum folate and cytokines in heterozygous β-thalassemia. Int J Lab Hematol. 2020;42:718–26.

    Article  Google Scholar 

  37. Colapinto CK, O’Connor DL, Sampson M, Williams B, Tremblay MS. Systematic review of adverse health outcomes associated with high serum or red blood cell folate concentrations. J Public Health (Bangkok). 2016;38:e84–97.

    Article  Google Scholar 

  38. Maruvada P, Stover PJ, Mason JB, Bailey RL, Davis CD, Field MS, Finnell RH, Garza C, Green R, Gueant J-L, et al. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am J Clin Nutr. 2020;00:1–14.

    Google Scholar 

  39. Claster S, Wood JC, Noetzli L, Carson SM, Hofstra TC, Khanna R, Coates TD. Nutritional deficiencies in iron overloaded patients with hemoglobinopathies. Am J Hematol. 2009;84:344–8.

    Article  CAS  Google Scholar 

  40. Martyres DJ, Vijenthira A, Barrowman N, Harris-Janz S, Chretien C, Klaassen RJ. Nutrient insufficiencies/deficiencies in children with sickle cell disease and its association with increased disease severity. Pediatr Blood Cancer. 2016;63:1060–4.

    Article  CAS  Google Scholar 

  41. Kennedy TS, Fung EB, Kawchak DA, Zemel BS, Ohene-Frempong K, Stallings VA. Red blood cell folate and serum vitamin B12 status in children with sickle cell disease. J Pediatr Hematol Oncol. 2001;23:165–9.

    Article  CAS  Google Scholar 

  42. Nelson MC, Zemel BS, Kawchak DA, Barden EM, Frongillo EAJ, Coburn SP, Ohene-Frempong K, Stallings VA. Vitamin B6 status of children with sickle cell disease. J Pediatr Hematol Oncol. 2002;24

    Google Scholar 

  43. Telen MJ. Pyridoxamine: another vitamin for sickle cell disease? Haematologica. 2020;105:2348–50.

    Article  Google Scholar 

  44. Varma R, Mankad V, Phelps D, Jenkins L, Suskind R. Depressed erythrocyte glutathione reductase activity in sickle cell disease. Am J Clin Nutr. 1983;38:884–7.

    Article  CAS  Google Scholar 

  45. El-Hazmi M, Al-Swailem A, Warsy A. Case studies on haemoglobin S heterozygotes with severe clinical manifestations. J Trop Pediatr. 1990;36:223–9.

    Article  CAS  Google Scholar 

  46. El-Hazmi M, Warsy A. Glutathione reductase in the south-western province of Saudi Arabia--genetic variation vs. acquired deficiency. Haematologia (Budap). 1989;22:37–42.

    CAS  Google Scholar 

  47. Steinberg MH, Chui DHK, Dover GJ, Sebastiani P, Alsultan A. Fetal hemoglobin in sickle cell anemia: a glass half full? Blood. 2014;123:481–5.

    Article  CAS  Google Scholar 

  48. Dietzen D, Rinaldo P, Whitley R. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: follow-up testing for metabolic disease identified by expanded newborn screening using tandem mass spectrometry. Clin Chem. 2009;55:1615–26.

    Article  CAS  Google Scholar 

  49. Neonatal guideline 9: newborn screening. Vancouver, Canada; 2010.

    Google Scholar 

  50. Bain. Neonatal/newborn haemoglobinopathy screening in Europe and Africa. J Clin Pathol. 2009;62:53–6.

    Article  CAS  Google Scholar 

  51. Padilla C, Therrell B. Newborn screening in the Asia Pacific region. J Inherit Metab Dis. 2007;30:490–506.

    Article  Google Scholar 

  52. Barker KB, Henderson AM, Naguib K, Vercauteren SM, Devlin AM, Albert AY, Bahizire E, Tugirimana PL, Akilimali PZ, Boy E, et al. Serum soluble transferrin receptor concentrations are elevated among Congolese children with glucose-6-phosphate dehydrogenase variants, but not sickle cell variants or alpha-thalassemia. J Nutr. 2017;147:1785–94.

    Article  CAS  Google Scholar 

  53. Soulier J. Fanconi anemia. Hematol Am Soc Hematol Educ Progr. 2011:492–7.

    Google Scholar 

  54. Hovinga J, George J. Hereditary thrombotic thrombocytopenic purpura. N Engl J Med. 2019;381:1653–62.

    Article  CAS  Google Scholar 

  55. Hassoun H, Palek J. Hereditary spherocytosis: a review of the clinical and molecular aspects of the disease. Blood Rev. 1996;10:129–47.

    Article  CAS  Google Scholar 

  56. Green R, Mitra A. Megaloblastic anemias: nutritional and other causes. Med Clin North Am. 2017;101:297–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal D. Karakochuk .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karakochuk, C.D., Rappaport, A.I., Williams, B.A. (2022). Genetic Hemoglobin Disorders and Their Association with Hemoglobin Concentration and Biomarkers of Nutritional Anemia. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics