Skip to main content

Iron Deficiency and Anemia Associated with Infectious and Inflammatory Diseases

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 516 Accesses

Abstract

A balanced iron metabolism is of major importance for all living organisms. During infection and inflammation, iron homeostasis undergoes subtle alterations that are based on host defense mechanisms against invading pathogens. Depending on the nature, and cell- or tissue-specific localization of such microbes, divergent alterations of iron homeostasis occur in order to restrict iron from pathogens. Anemia, termed as anemia of inflammation (AI), develops as a consequence of iron disturbances in the setting of infection and inflammation. The major mechanisms that lead to AI pathogenesis are iron-restricted erythropoiesis, immunity-driven reduction of erythrocyte half-life, an impaired biological activity of the red cell hormone erythropoietin (EPO), and direct antiproliferative effects of cytokines on erythroid progenitors. AI is considered the second most frequent anemic entity worldwide and the leading cause of anemia in hospitalized patients, affecting more than one billion people worldwide. This chapter discusses the pathophysiological background, diagnosis, and treatment of iron deficiency and anemia in the setting of infectious and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valente de Souza L, Hoffmann A, Weiss G. Impact of bacterial infections on erythropoiesis. Expert Rev Anti-Infect Ther. 2020;1-15 https://doi.org/10.1080/14787210.2021.1841636.

  2. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344–61. https://doi.org/10.1016/j.cell.2016.12.034.

    Article  CAS  Google Scholar 

  3. Sonnweber T, Nachbaur D, Schroll A, Nairz M, Seifert M, Demetz E, et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut. 2014;63(12):1951–9. https://doi.org/10.1136/gutjnl-2013-305317.

    Article  CAS  Google Scholar 

  4. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926–32. https://doi.org/10.1172/jci31370.

    Article  CAS  Google Scholar 

  5. Theurl I, Aigner E, Theurl M, Nairz M, Seifert M, Schroll A, et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood. 2009;113(21):5277–86. https://doi.org/10.1182/blood-2008-12-195651.

    Article  CAS  Google Scholar 

  6. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood. 2003;101(10):4148–54. https://doi.org/10.1182/blood-2002-08-2459.

    Article  CAS  Google Scholar 

  7. Guida C, Altamura S, Klein FA, Galy B, Boutros M, Ulmer AJ, et al. A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood. 2015;125(14):2265–75. https://doi.org/10.1182/blood-2014-08-595256.

    Article  CAS  Google Scholar 

  8. Tilg H, Ulmer H, Kaser A, Weiss G. Role of IL-10 for induction of anemia during inflammation. J Immunol. 2002;169(4):2204–9. https://doi.org/10.4049/jimmunol.169.4.2204.

    Article  CAS  Google Scholar 

  9. Weinberg ED. Iron availability and infection. Biochim Biophys Acta. 2009;1790(7):600–5. https://doi.org/10.1016/j.bbagen.2008.07.002.

    Article  CAS  Google Scholar 

  10. Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013;13(5):509–19. https://doi.org/10.1016/j.chom.2013.04.010.

    Article  CAS  Google Scholar 

  11. Soares MP, Weiss G. The iron age of host-microbe interactions. EMBO Rep. 2015;16(11):1482–500. https://doi.org/10.15252/embr.201540558.

    Article  CAS  Google Scholar 

  12. Turlin E, Débarbouillé M, Augustyniak K, Gilles AM, Wandersman C. Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli. PLoS One. 2013;8(2):e56529. https://doi.org/10.1371/journal.pone.0056529.

    Article  CAS  Google Scholar 

  13. Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol. 2017;52(3):314–26. https://doi.org/10.1080/10409238.2017.1293606.

    Article  CAS  Google Scholar 

  14. Gerner RR, Nuccio SP, Raffatellu M. Iron at the host-microbe interface. Mol Asp Med. 2020;75:100895. https://doi.org/10.1016/j.mam.2020.100895.

    Article  CAS  Google Scholar 

  15. Nairz M, Weiss G. Iron in infection and immunity. Mol Asp Med. 2020;75:100864. https://doi.org/10.1016/j.mam.2020.100864.

    Article  CAS  Google Scholar 

  16. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133–43. https://doi.org/10.1016/s0140-6736(06)67962-2.

    Article  CAS  Google Scholar 

  17. Soofi S, Cousens S, Iqbal SP, Akhund T, Khan J, Ahmed I, et al. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: a cluster-randomised trial. Lancet. 2013;382(9886):29–40. https://doi.org/10.1016/s0140-6736(13)60437-7.

    Article  CAS  Google Scholar 

  18. Brekelmans P, van Soest P, Leenen PJ, van Ewijk W. Inhibition of proliferation and differentiation during early T cell development by anti-transferrin receptor antibody. Eur J Immunol. 1994;24(11):2896–902. https://doi.org/10.1002/eji.1830241147.

    Article  CAS  Google Scholar 

  19. Nyakeriga AM, Troye-Blomberg M, Dorfman JR, Alexander ND, Bäck R, Kortok M, et al. Iron deficiency and malaria among children living on the coast of Kenya. J Infect Dis. 2004;190(3):439–47. https://doi.org/10.1086/422331.

    Article  CAS  Google Scholar 

  20. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. https://doi.org/10.1126/science.1104742.

    Article  CAS  Google Scholar 

  21. Theurl I, Theurl M, Seifert M, Mair S, Nairz M, Rumpold H, et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008;111(4):2392–9. https://doi.org/10.1182/blood-2007-05-090019.

    Article  CAS  Google Scholar 

  22. Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, Werner-Felmayer G, et al. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993;12(9):3651–7.

    Article  CAS  Google Scholar 

  23. Drapier JC, Hirling H, Wietzerbin J, Kaldy P, Kuhn LC. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 1993;12(9):3643–9.

    Article  CAS  Google Scholar 

  24. Weiss G, Schett G. Anaemia in inflammatory rheumatic diseases. Nat Rev Rheumatol. 2013;9(4):205–15. https://doi.org/10.1038/nrrheum.2012.183.

    Article  CAS  Google Scholar 

  25. Giansanti F, Panella G, Leboffe L, Antonini G. Lactoferrin from Milk: nutraceutical and pharmacological properties. Pharmaceuticals. 2016;9(4) https://doi.org/10.3390/ph9040061.

  26. Nairz M, Schroll A, Haschka D, Dichtl S, Sonnweber T, Theurl I, et al. Lipocalin-2 ensures host defense against salmonella typhimurium by controlling macrophage iron homeostasis and immune response. Eur J Immunol. 2015;45(11):3073–86. https://doi.org/10.1002/eji.201545569.

    Article  CAS  Google Scholar 

  27. Forbes JR, Gros P. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 2001;9(8):397–403. https://doi.org/10.1016/s0966-842x(01)02098-4.

    Article  CAS  Google Scholar 

  28. Fritsche G, Nairz M, Werner ER, Barton HC, Weiss G. Nramp1-functionality increases iNOS expression via repression of IL-10 formation. Eur J Immunol. 2008;38(11):3060–7. https://doi.org/10.1002/eji.200838449.

    Article  CAS  Google Scholar 

  29. Nairz M, Schleicher U, Schroll A, Sonnweber T, Theurl I, Ludwiczek S, et al. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in salmonella infection. J Exp Med. 2013;210(5):855–73. https://doi.org/10.1084/jem.20121946.

    Article  CAS  Google Scholar 

  30. Byrd TF, Horwitz MA. Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J Clin Invest. 1993;91(3):969–76. https://doi.org/10.1172/jci116318.

    Article  CAS  Google Scholar 

  31. Nix RN, Altschuler SE, Henson PM, Detweiler CS. Hemophagocytic macrophages harbor salmonella enterica during persistent infection. PLoS Pathog. 2007;3(12):e193. https://doi.org/10.1371/journal.ppat.0030193.

    Article  CAS  Google Scholar 

  32. Silva-Herzog E, Detweiler CS. Intracellular microbes and haemophagocytosis. Cell Microbiol. 2008;10(11):2151–8. https://doi.org/10.1111/j.1462-5822.2008.01192.x.

    Article  CAS  Google Scholar 

  33. Kassebaum NJ, Collaborators GBDA. The global burden of anemia. Hematol Oncol Clin North Am. 2016;30(2):247–308. https://doi.org/10.1016/j.hoc.2015.11.002.

    Article  Google Scholar 

  34. Martinsson A, Andersson C, Andell P, Koul S, Engstrom G, Smith JG. Anemia in the general population: prevalence, clinical correlates and prognostic impact. Eur J Epidemiol. 2014;29(7):489–98. https://doi.org/10.1007/s10654-014-9929-9.

    Article  Google Scholar 

  35. Schumann K, Solomons NW. Perspective: what makes it so difficult to mitigate worldwide anemia prevalence? Adv Nutr. 2017;8(3):401–8. https://doi.org/10.3945/an.116.013847.

    Article  Google Scholar 

  36. Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40–50. https://doi.org/10.1182/blood-2018-06-856500.

    Article  CAS  Google Scholar 

  37. Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832–43. https://doi.org/10.1056/NEJMra1401038.

    Article  Google Scholar 

  38. Cappellini MD, Comin-Colet J, de Francisco A, Dignass A, Doehner W, Lam CS, et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol. 2017;92(10):1068–78. https://doi.org/10.1002/ajh.24820.

    Article  CAS  Google Scholar 

  39. Khalil S, Delehanty L, Grado S, Holy M, White Z 3rd, Freeman K, et al. Iron modulation of erythropoiesis is associated with scribble-mediated control of the erythropoietin receptor. J Exp Med. 2018;215(2):661–79. https://doi.org/10.1084/jem.20170396.

    Article  CAS  Google Scholar 

  40. Arezes J, Foy N, McHugh K, Sawant A, Quinkert D, Terraube V, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14):1473–7. https://doi.org/10.1182/blood-2018-06-857995.

    Article  CAS  Google Scholar 

  41. Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J Clin Med. 2020;9(8) https://doi.org/10.3390/jcm9082429.

  42. Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21. https://doi.org/10.1056/NEJMoa1211801.

    Article  CAS  Google Scholar 

  43. Petzer V, Theurl I, Weiss G. Established and emerging concepts to treat imbalances of iron homeostasis in inflammatory diseases. Pharmaceuticals. 2018;11(4) https://doi.org/10.3390/ph11040135.

  44. Sheetz M, Barrington P, Callies S, Berg PH, McColm J, Marbury T, et al. Targeting the hepcidin-ferroportin pathway in anaemia of chronic kidney disease. Br J Clin Pharmacol. 2019;85(5):935–48. https://doi.org/10.1111/bcp.13877.

    Article  CAS  Google Scholar 

  45. Zimmermann MB, Chassard C, Rohner F, N’Goran EK, Nindjin C, Dostal A, et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in cote d’Ivoire. Am J Clin Nutr. 2010;92(6):1406–15. https://doi.org/10.3945/ajcn.110.004564.

    Article  CAS  Google Scholar 

  46. Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 2020;31(1):115–30 e6. https://doi.org/10.1016/j.cmet.2019.10.005.

    Article  CAS  Google Scholar 

  47. Murray MJ, Murray AB, Murray MB, Murray CJ. The adverse effect of iron repletion on the course of certain infections. Br Med J. 1978;2(6145):1113–5. https://doi.org/10.1136/bmj.2.6145.1113.

    Article  CAS  Google Scholar 

  48. Isanaka S, Mugusi F, Urassa W, Willett WC, Bosch RJ, Villamor E, et al. Iron deficiency and anemia predict mortality in patients with tuberculosis. J Nutr. 2012;142(2):350–7. https://doi.org/10.3945/jn.111.144287.

    Article  CAS  Google Scholar 

  49. Sanchez KK, Chen GY, Schieber AMP, Redford SE, Shokhirev MN, Leblanc M, et al. Cooperative metabolic adaptations in the host can favor asymptomatic infection and select for attenuated virulence in an enteric pathogen. Cell. 2018;175(1):146–58 e15. https://doi.org/10.1016/j.cell.2018.07.016.

    Article  CAS  Google Scholar 

  50. Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol. 2014;5:152. https://doi.org/10.3389/fphar.2014.00152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoffmann, A., Valente de Souza, L., Weiss, G. (2022). Iron Deficiency and Anemia Associated with Infectious and Inflammatory Diseases. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics