Skip to main content

The Role of Vitamin D in Anemia

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 555 Accesses

Abstract

Vitamin D may increase the risk, especially when inflammation is present. Vitamin D appears to increase the amount of iron available for red blood cell synthesis by reducing hepatic hepcidin synthesis, a hormone that binds to ferroportin and blocks cellular iron export. An association between serum 25-hydroxyvitamin D (25OHD), a biomarker of vitamin D status, and hemoglobin concentration has been reported in several studies. The association is weak and is modified by sex, ethnicity, and background rates of inflammation and anemia. Moreover, the association between 25OHD and hemoglobin is not continuous with a threshold effect at approximately 50 nmol/L, above which higher 25OHD is no longer associated with hemoglobin. Randomized control trials do not support vitamin D supplementation to reduce anemia. Studies have been small and in heterogenous groups, with including participants without anemia or inflammation. Larger, well-powered trials are needed ideally in participants with a high baseline burden of inflammation and anemia and low 25OHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, Martucci G, Pilz S, Malle O. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498–513.

    Article  CAS  Google Scholar 

  2. McLean E, Cogswell M, Egli I, Wojdyla D, Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2008;12:444–54.

    Article  Google Scholar 

  3. Azizi-Soleiman F, Vafa M, Abiri B, Safavi M. Effects of iron on vitamin D metabolism: a systematic review. Int J Prev Med. 2016;7:126.

    Article  Google Scholar 

  4. Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, Nayak A, Wesseling-Perry K, Westerman M, Hollis BW, Salusky IB, Hewison M. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564–72.

    Article  CAS  Google Scholar 

  5. Vatanparast H, Calvo MS, Green TJ, Whiting SJ. Despite mandatory fortification of staple foods, vitamin D intakes of Canadian children and adults are inadequate. J Steroid Biochem Mol Biol. 2010;121(1–2):301–3.

    Article  CAS  Google Scholar 

  6. Rockell JE, Skeaff CM, Williams SM, Green TJ. Association between quantitative measures of skin color and plasma 25-hydroxyvitamin D. Osteoporos Int. 2008;19(11):1639–42.

    Article  CAS  Google Scholar 

  7. Holick MF, Vitamin D. Deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  Google Scholar 

  8. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289(1):F8–28.

    Article  CAS  Google Scholar 

  9. Aucella F, Scalzulli RP, Gatta G, Vigilante M, Carella AM, Stallone C. Calcitriol increases burst-forming unit-erythroid proliferation in chronic renal failure. Nephron Clin Pract. 2003;95(4):c121–c7.

    Article  CAS  Google Scholar 

  10. Alon DB, Chaimovitz C, Dvilansky A, Lugassy G, Douvdevani A, Shany S, Nathan I. Novel role of 1,25(OH)2D3 in induction of erythroid progenitor cell proliferation. Exp Hematol. 2002;30(5):403–9.

    Article  Google Scholar 

  11. Tanaka M, Komaba H, Fukagawa M. Emerging association between parathyroid hormone and anemia in hemodialysis patients. Ther Apher Dial. 2018;22(3):242–5.

    Article  Google Scholar 

  12. Madu AJ, Ughasoro MD. Anaemia of chronic disease: an in-depth review. Med Princ Pract. 2017;26(1):1–9.

    Article  Google Scholar 

  13. Ganz T. Anemia of inflammation. N Engl J Med. 2019;381(12):1148–57.

    Article  CAS  Google Scholar 

  14. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271–6.

    Article  CAS  Google Scholar 

  15. Zughaier SM, Alvarez JA, Sloan JH, Konrad RJ, Tangpricha V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol. 2014;1(1):19–25.

    Google Scholar 

  16. DeLoughery TG. Microcytic anemia. N Engl J Med. 2014;371(14):1324–31.

    Article  Google Scholar 

  17. Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105(2):260–72.

    Article  Google Scholar 

  18. Atkinson MA, Melamed ML, Kumar J, Roy CN, Miller ER 3rd, Furth SL, Fadrowski JJ. Vitamin D, race, and risk for anemia in children. J Pediatr. 2014;164(1):153–8 e1.

    Article  CAS  Google Scholar 

  19. Lee JA, Hwang JS, Hwang IT, Kim DH, Seo JH, Lim JS. Low vitamin D levels are associated with both iron deficiency and anemia in children and adolescents. Pediatr Hematol Oncol. 2015;32(2):99–108.

    Article  CAS  Google Scholar 

  20. Nikooyeh B, Neyestani TR. Poor vitamin D status increases the risk of anemia in school children: National Food and Nutrition Surveillance. Nutrition. 2018;47:69–74.

    Article  CAS  Google Scholar 

  21. Aloia JF, Chen DG, Chen H. The 25(OH)D/PTH threshold in black women. J Clin Endocrinol Metab. 2010;95(11):5069–73.

    Article  CAS  Google Scholar 

  22. Thomas CE, Guillet R, Queenan RA, Cooper EM, Kent TR, Pressman EK, Vermeylen FM, Roberson MS, O’Brien KO. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr. 2015;102(5):1088–95.

    Article  CAS  Google Scholar 

  23. Han SS, Kim M, Kim H, Lee SM, Oh YJ, Lee JP, Kim S, Joo KW, Lim CS, Kim YS, Kim DK. Non-linear relationship between serum 25-hydroxyvitamin D and hemoglobin in Korean females: the Korean National Health and Nutrition Examination Survey 2010-2011. PLoS One. 2013;8(8):e72605.

    Article  CAS  Google Scholar 

  24. Doudin A, Becker A, Rothenberger A, Meyer T. Relationship between serum 25-hydroxyvitamin D and red blood cell indices in German adolescents. Eur J Pediatr. 2018;177(4):583–91.

    Article  CAS  Google Scholar 

  25. Takaoka N, Nishida K, Sairenchi T, Umesawa M, Noguchi R, Someya K, Kobashi G. Changes in vitamin D status considering hemodilution factors in Japanese pregnant women according to trimester: a longitudinal survey. PLoS One. 2020;15(10):e0239954.

    Article  CAS  Google Scholar 

  26. Moran-Lev H, Weisman Y, Cohen S, Deutsch V, Cipok M, Bondar E, Lubetzky R, Mandel D. The interrelationship between hepcidin, vitamin D, and anemia in children with acute infectious disease. Pediatr Res. 2018;84(1):62–5.

    Article  CAS  Google Scholar 

  27. Monlezun DJ, Camargo CA Jr, Mullen JT, Quraishi SA. Vitamin D status and the risk of anemia in community-dwelling adults: results from the National Health and Nutrition Examination Survey 2001-2006. Medicine (Baltimore). 2015;94(50):e1799.

    Article  CAS  Google Scholar 

  28. Sim JJ, Lac PT, Liu IL, Meguerditchian SO, Kumar VA, Kujubu DA, Rasgon SA. Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol. 2010;89(5):447–52.

    Article  CAS  Google Scholar 

  29. Smith EM, Alvarez JA, Martin GS, Zughaier SM, Ziegler TR, Tangpricha V. Vitamin D deficiency is associated with anaemia among African Americans in a US cohort. Br J Nutr. 2015;113(11):1732–40.

    Article  CAS  Google Scholar 

  30. Braithwaite VS, Crozier SR, D’Angelo S, Prentice A, Cooper C, Harvey NC, Jones KS, Group MT. The effect of vitamin D supplementation on hepcidin, iron status, and inflammation in pregnant women in the United Kingdom. Nutrients. 2019;11(1).

    Google Scholar 

  31. Malczewska-Lenczowska J, Sitkowski D, Surala O, Orysiak J, Szczepanska B, Witek K. The association between iron and vitamin D status in female elite athletes. Nutrients. 2018;10(2).

    Google Scholar 

  32. De la Cruz-Góngora V, Salinas-Rodríguez A, Flores-Aldana M, Villalpando S. Etiology of anemia in older mexican adults: the role of hepcidin, vitamin A and vitamin D. Nutrients. 2021;13(11):3814.

    Article  Google Scholar 

  33. Ahmad Fuzi SF, Mushtaq S. Vitamin D3 supplementation for 8 weeks leads to improved haematological status following the consumption of an iron-fortified breakfast cereal: a double-blind randomised controlled trial in iron-deficient women. Br J Nutr. 2019;121(10):1146–57.

    Article  CAS  Google Scholar 

  34. Ernst JB, Prokop S, Fuchs U, Dreier J, Kuhn J, Knabbe C, Berthold HK, Pilz S, Gouni-Berthold I, Gummert JF, Börgermann J, Zittermann A. Randomized supplementation of 4000 IU vitamin D(3) daily vs placebo on the prevalence of anemia in advanced heart failure: the EVITA trial. Nutr J. 2017;16(1):49.

    Article  CAS  Google Scholar 

  35. Ernst JB, Tomaschitz A, Grübler MR, Gaksch M, Kienreich K, Verheyen N, März W, Pilz S, Zittermann A. Vitamin D supplementation and hemoglobin levels in hypertensive patients: a randomized controlled trial. Int J Endocrinol. 2016;2016:6836402.

    Article  Google Scholar 

  36. Kasprowicz K, Ratkowski W, Wolyniec W, Kaczmarczyk M, Witek K, Zmijewski P, Renke M, Jastrzebski Z, Rosemann T, Nikolaidis PT, Knechtle B. The effect of vitamin D3 supplementation on hepcidin, iron, and IL-6 responses after a 100 km ultra-marathon. Int J Environ Res Public Health. 2020;17(8).

    Google Scholar 

  37. Madar AA, Stene LC, Meyer HE, Brekke M, Lagerlov P, Knutsen KV. Effect of vitamin D3 supplementation on iron status: a randomized, double-blind, placebo-controlled trial among ethnic minorities living in Norway. Nutr J. 2016;15(1):74.

    Article  Google Scholar 

  38. Smith EM, Alvarez JA, Kearns MD, Hao L, Sloan JH, Konrad RJ, Ziegler TR, Zughaier SM, Tangpricha V. High-dose vitamin D3 reduces circulating hepcidin concentrations: a pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin Nutr. 2017;36(4):980–5.

    Article  CAS  Google Scholar 

  39. Smith EM, Jones JL, Han JE, Alvarez JA, Sloan JH, Konrad RJ, Zughaier SM, Martin GS, Ziegler TR, Tangpricha V. High-dose vitamin D3 administration is associated with increases in hemoglobin concentrations in mechanically ventilated critically Ill adults: a pilot double-blind, randomized, placebo-controlled trial. JPEN J Parenter Enteral Nutr. 2018;42(1):87–94.

    CAS  Google Scholar 

  40. Sooragonda B, Bhadada SK, Shah VN, Malhotra P, Ahluwalia J, Sachdeva N. Effect of vitamin D replacement on hemoglobin concentration in subjects with concurrent iron-deficiency anemia and vitamin D deficiency: a randomized, single-blinded, placebo-controlled trial. Acta Haematol. 2015;133(1):31–5.

    Article  CAS  Google Scholar 

  41. Panwar B, McCann D, Olbina G, Westerman M, Gutierrez OM. Effect of calcitriol on serum hepcidin in individuals with chronic kidney disease: a randomized controlled trial. BMC Nephrol. 2018;19(1):35.

    Article  Google Scholar 

  42. Eloqayli H, Al-Yousef A, Jaradat R. Vitamin D and ferritin correlation with chronic neck pain using standard statistics and a novel artificial neural network prediction model. Br J Neurosurg. 2018;32(2):172–6.

    Article  Google Scholar 

  43. Samson KLI, Loh SP, Lee SS, Sulistyoningrum DC, Khor GL, Shariff ZBM, Ismai IZ, Yelland LN, Leemaqz S, Makrides M, Hutcheon JA, Roche ML, Karakochuk CD, Green TJ. Weekly iron–folic acid supplements containing 2.8 mg folic acid are associated with a lower risk of neural tube defects than the current practice of 0.4 mg: a randomised controlled trial in Malaysia. BMJ Glob Health. 2020;5(12):e003897.

    Article  Google Scholar 

  44. Harvey-Leeson S, Karakochuk CD, Hawes M, Tugirimana PL, Bahizire E, Akilimali PZ, Michaux KD, Lynd LD, Whitfield KC, Moursi M, Boy E, Foley J, McLean J, Houghton LA, Gibson RS, Green TJ. Anemia and micronutrient status of women of childbearing age and children 6–59 months in the Democratic Republic of the Congo. Nutrients. 2016;8(2):98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim J. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Netting, M.J., Best, K.P., Green, T.J. (2022). The Role of Vitamin D in Anemia. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics