Skip to main content

Vitamin A in Nutritional Anemia

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 527 Accesses

Abstract

Vitamin A deficiency (VAD) affects ~30% of preschoolers and 15% of pregnant women in low- and middle-income countries. Known to cause xerophthalmia and increase risk of mortality in children, clinical and experimental studies have also long revealed disturbed hematopoiesis and an anemia of vitamin A deficiency (VAD) that responds to vitamin A repletion, irrespective of iron sufficiency. VAD and anemia are common and often coexist in undernourished populations. In children and pregnant women, hemoglobin (Hb) concentration has been shown to be 0.2–0.8 g/L higher for each 1 μg per deciliter increase in serum retinol, underlying an increased risk of anemia in VAD versus vitamin A adequate individuals. Vitamin A interventions for varying durations in anemic and at least mildly VAD populations have found Hb to increase by 2–10 g/L in children, and 3–24 g/L in women of reproductive age, over controls. While the metabolic effects of vitamin A on iron metabolism remain under-researched, available evidence suggests that vitamin A may affect hemoglobin concentration by regulating (a) storage, mobilization, and release of tissue iron into circulation, (b) erythropoiesis via effects on cell differentiation, (c) sequestration and release of tissue iron in response to infection, or (d) mechanisms of iron absorption. Disruption of any of these pathways due to VAD can cause a preventable anemia, offering an often unrecognized, additional public health benefit of assuring an adequate vitamin A intake and status in nutritionally at-risk populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman SM, Christian P, West KP. The role of vitamins in the prevention and control of anaemia. Public Health Nutr. 2000;3(2):125–50.

    Article  CAS  Google Scholar 

  2. Bloem MW. Interdependence of vitamin A and iron: an important association for programmes of anaemia control. Proc Nutr Soc. 1995;54(2):501–8.

    Article  CAS  Google Scholar 

  3. Ross AC. The relationship between immunocompetence and vitamin A status. In: Sommer A, West Jr KP, editors. Vitamin A deficiency: health, survival, and vision. Oxford: Oxford University Press; 1996. p. 251–73.

    Google Scholar 

  4. Beisel WR, West KP Jr, Sommer A. Micronutrients in infection. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens, & practice. Philadelphia: Churchill Livingstone; 1999. p. 76–87.

    Google Scholar 

  5. Semba RD, Bloem MW. The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr. 2002;56(4):271–81.

    Article  CAS  Google Scholar 

  6. Bloch CE. Clinical investigation of Xerophthalmia and Dystrophy in Infants and Young Children (Xerophthalmia et Dystrophia Alipogenetica). J Hyg (Lond). 1921;19(3):283–304.5.

    Article  CAS  Google Scholar 

  7. Berglund H, Keefer KC, Yang CS. Deficiency anemia in Chinese, responding to cod liver oil. Proc Soc Exper Biol Med. 1929;26:418–21.

    Article  Google Scholar 

  8. Wolbach SB, Howe PR. Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med. 1925;42(6):753–77.

    Article  CAS  Google Scholar 

  9. McLaren DS, Tchalian M, Ajans ZA. Biochemical and hematologic changes in the vitamin A-deficient rat. Am J Clin Nutr. 1965;17(3):131–8.

    Article  CAS  Google Scholar 

  10. Mejia LA, Hodges RE, Rucker RB. Role of vitamin A in the absorption, retention and distribution of iron in the rat. J Nutr. 1979;109(1):129–37.

    Article  CAS  Google Scholar 

  11. Abbott OD, Ahmann CF, Overstreet MR. Effect of avitaminosis A on the human blood picture. Am J Physiol Legacy Content. 1939;126(2):254–60.

    Article  CAS  Google Scholar 

  12. Wagner KH. Die experimentelle Avitaminose A beim Menschen. Hoppe Syelers Z Physiol Chem. 1940;264:153–89.

    Article  CAS  Google Scholar 

  13. Hodges RE, et al. Hematopoietic studies in vitamin A deficiency. Am J Clin Nutr. 1978;31(5):876–85.

    Article  CAS  Google Scholar 

  14. Pedersen S, et al. Haemoconcentration associated with low vitamin A status can mask anaemia. Acta Trop. 2002;84(1):55–8.

    Article  CAS  Google Scholar 

  15. van Stuijvenberg ME, et al. Response to an iron fortification programme in relation to vitamin A status in 6-12-year-old school children. Int J Food Sci Nutr. 1997;48(1):41–9.

    Article  Google Scholar 

  16. Mejía LA, Chew F. Hematological effect of supplementing anemic children with vitamin A alone and in combination with iron. Am J Clin Nutr. 1988;48(3):595–600.

    Article  Google Scholar 

  17. Mwanri L, et al. Supplemental vitamin A improves anemia and growth in anemic school children in Tanzania. J Nutr. 2000;130(11):2691–6.

    Article  CAS  Google Scholar 

  18. Ahmed F, Khan MR, Jackson AA. Concomitant supplemental vitamin A enhances the response to weekly supplemental iron and folic acid in anemic teenagers in urban Bangladesh. Am J Clin Nutr. 2001;74(1):108–15.

    Article  CAS  Google Scholar 

  19. Suharno D, et al. Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia. Lancet. 1993;342(8883):1325–8.

    Article  CAS  Google Scholar 

  20. Sommer A, West KP Jr. Vitamin A deficiency: health, survival, and vision. New York: Oxford University Press; 1996.

    Google Scholar 

  21. Sommer A, Davidson FR. Assessment and control of vitamin A deficiency: the Annecy Accords. J Nutr. 2002;132(9 Suppl):2845s–50s.

    Article  CAS  Google Scholar 

  22. World Health Organization (WHO). Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency, Geneva, Switzerland, 2009.

    Google Scholar 

  23. Singh V, West KP Jr. Vitamin A deficiency and xerophthalmia among school-aged children in Southeastern Asia. Eur J Clin Nutr. 2004;58(10):1342–9.

    Article  CAS  Google Scholar 

  24. Christian P. Recommendations for indicators: night blindness during pregnancy—a simple tool to assess vitamin A deficiency in a population. J Nutr. 2002;132(9 Suppl):2884s–8s.

    Article  CAS  Google Scholar 

  25. Gernand AD, Schulze KJ, Stewart CP, West KP Jr, Christian P. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol. 2016:1–16. https://doi.org/10.1038/nrendo.2016.37.

  26. Bailey R, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66(suppl 2):22–33.

    Article  CAS  Google Scholar 

  27. Stewart CP, Fanzo J, West KP Jr, Black RE. Chapter 4: Nutrition. In: Merson MH, Black RE, Mills AJ, editors. Global health: diseases, programs, systems, and policies. 4th ed. Burlington, VT: Jones & Bartlett Learning; 2020. p. 259–333.

    Google Scholar 

  28. Semba RD, Askari S, Gibson S, Bloem MW, Kraemer K. The potential impact of climate change on the micronutrient-rich food supply. Adv Nutr. 2021;00:1–21.

    Google Scholar 

  29. Garg M, Sharma A, Vats S, Tiwari V, Kumari V, Mishra V, Krishania M. Vitamins in cereals: a critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Front Hum Nutr. 2021;8:586815. https://doi.org/10.3389/fnut.2021.586815.

    Article  CAS  Google Scholar 

  30. Blaner WS, Li Y. Vitamin A metabolism, storage and tissue delivery mechanisms. In: Dolle P, Niederreither K, editors. The retinoids: biology, biochemistry, and disease. 1st ed. Hoboken, NJ: Wiley-Blackwell; 2015. p. 3–34.

    Google Scholar 

  31. Tanumihardjo S. Biomarkers of nutrition for development. Am J Clin Nutr. 2011;94(2):658S–65S.

    Article  Google Scholar 

  32. Palmer A, West KP Jr, Dalmiya N, Schultink. The use and interpretation of serum retinol distributions in evaluating the public health impact of vitamin A programmes. Public Health Nutr. 2012;15(7):1201–15.

    Article  Google Scholar 

  33. Stevens GA, Bennett JE, Hennocq Q, Lu Y, De-Regil LM, Rogers L, Danaei G, Li G, White RA, Flaxman SR, Oehrle S-P, Finucane MM, Guerrero R, Bhutta ZA, Then-Paulino A, Fawzi W, Black RE, Ezzati M. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Global Health. 2015;3:e528–36.

    Article  Google Scholar 

  34. Wirth JP, Petry N, Tanumihardjo SA, Rogers LM, McLean E, Greig A, Garrett GS, Klemm RD, Rohner F. Vitamin A supplementation programs and country-level evidence of vitamin A deficiency. Nutrients. 2017;9(190):1–18. https://doi.org/10.3390/nu9030190.

    Article  CAS  Google Scholar 

  35. Christian P, West KP Jr, Khatry SK, Katz J, Shrestha SR, Pradhan EK, Le Clerq SC, Pokhrel RP. Night blindness of pregnancy in rural Nepal—nutritional and health risks. Intl J Epidemiol. 1998;27:231–7.

    Article  CAS  Google Scholar 

  36. Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228(1):1–14.

    Article  CAS  Google Scholar 

  37. Jelkmann W, et al. Effects of antioxidant vitamins on renal and hepatic erythropoietin production. Kidney Int. 1997;51(2):497–501.

    Article  CAS  Google Scholar 

  38. Zimmermann MB, et al. Vitamin A supplementation in children with poor vitamin A and iron status increases erythropoietin and hemoglobin concentrations without changing total body iron. Am J Clin Nutr. 2006;84(3):580–6.

    Article  CAS  Google Scholar 

  39. Ahmed F, et al. The coexistence of other micronutrient deficiencies in anaemic adolescent schoolgirls in rural Bangladesh. Eur J Clin Nutr. 2008;62(3):365–72.

    Article  CAS  Google Scholar 

  40. Ahmed F, et al. Anaemia and vitamin A status among adolescent schoolboys in Dhaka City, Bangladesh. Public Health Nutr. 2006;9(3):345–50.

    Article  Google Scholar 

  41. Al-Mekhlafi HM, et al. Effects of vitamin A supplementation on iron status indices and iron deficiency anaemia: a randomized controlled trial. Nutrients. 2013;6(1):190–206.

    Article  Google Scholar 

  42. Chen K, et al. Co-assessment of iron, vitamin A and growth status to investigate anemia in preschool children in suburb Chongqing, China. World J Pediatr. 2009;5(4):275–81.

    Article  CAS  Google Scholar 

  43. Hamdy AM, Abdel Aleem MM, El-Shazly AA. Maternal vitamin A deficiency during pregnancy and its relation with maternal and neonatal hemoglobin concentrations among poor Egyptian families. ISRN Pediatr. 2013;2013:652148.

    Article  CAS  Google Scholar 

  44. Hashizume M, et al. Anaemia, iron deficiency and vitamin A status among school-aged children in rural Kazakhstan. Public Health Nutr. 2005;8(6):564–71.

    Article  Google Scholar 

  45. Jafari SM, et al. Serum retinol levels are positively correlated with hemoglobin concentrations, independent of iron homeostasis: a population-based study. Nutr Res. 2013;33(4):279–85.

    Article  CAS  Google Scholar 

  46. Khan NC, et al. Sub clinical vitamin A deficiency and anemia among Vietnamese children less than five years of age. Asia Pac J Clin Nutr. 2007;16(1):152–7.

    Google Scholar 

  47. Khatib IM, Elmadfa I. Poor nutritional health of Bedouin preschool children in Jordan: the irony of urbanization. Ann Nutr Metab. 2009;54(4):301–9.

    Article  CAS  Google Scholar 

  48. Saraiva BC, et al. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years. J Pediatr. 2014;90(6):593–9.

    Article  Google Scholar 

  49. Shamim AA, et al. Plasma zinc, vitamin B(12) and α-tocopherol are positively and plasma γ-tocopherol is negatively associated with Hb concentration in early pregnancy in north-west Bangladesh. Public Health Nutr. 2013;16(8):1354–61.

    Article  Google Scholar 

  50. Villalpando S, et al. Distribution of anemia associated with micronutrient deficiencies other than iron in a probabilistic sample of Mexican children. Ann Nutr Metab. 2006;50(6):506–11.

    Article  CAS  Google Scholar 

  51. Thurlow RA, et al. Only a small proportion of anemia in northeast Thai schoolchildren is associated with iron deficiency. Am J Clin Nutr. 2005;82(2):380–7.

    Article  CAS  Google Scholar 

  52. Cardoso MA, et al. Underlying factors associated with anemia in Amazonian children: a population-based, cross-sectional study. PLoS One. 2012;7(5):e36341.

    Article  CAS  Google Scholar 

  53. Bloem MW, et al. Iron metabolism and vitamin A deficiency in children in northeast Thailand. Am J Clin Nutr. 1989;50(2):332–8.

    Article  CAS  Google Scholar 

  54. Ahmed F, et al. Interactions between growth and nutrient status in school-age children of urban Bangladesh. Am J Clin Nutr. 1993;58(3):334–8.

    Article  CAS  Google Scholar 

  55. George J, Yiannakis M, Main B, Devenish R, Anderson C, An US, Williams SM, Gibson RS. Genetic hemoglobin disorders, infection, and deficiencies of iron and vitamin A determine anemia in young Cambodian children. J Nutr. 2012;142:781–7.

    Article  CAS  Google Scholar 

  56. West KP Jr, et al. Double blind, cluster randomised trial of low dose supplementation with vitamin A or beta carotene on mortality related to pregnancy in Nepal. The NNIPS-2 Study Group. BMJ. 1999;318(7183):570–5.

    Article  CAS  Google Scholar 

  57. Dreyfuss ML, et al. Hookworms, malaria and vitamin A deficiency contribute to anemia and iron deficiency among pregnant women in the plains of Nepal. J Nutr. 2000;130(10):2527–36.

    Article  CAS  Google Scholar 

  58. Ayogu RN, et al. Prevalence and factors associated with anthropometric failure, vitamin A and iron deficiency among adolescents in a Nigerian urban community. Afr Health Sci. 2016;16(2):389–98.

    Article  Google Scholar 

  59. Palafox NA, et al. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition. 2003;19(5):405–8.

    Article  CAS  Google Scholar 

  60. Lloyd-Puryear M, et al. Vitamin A deficiency and anemia among micronesian children. Nutr Res. 1989;9(9):1007–16.

    Article  Google Scholar 

  61. Albalak R, et al. Co-occurrence of nutrition problems in Honduran children. J Nutr. 2000;130(9):2271–3.

    Article  CAS  Google Scholar 

  62. Castejon HV, et al. Co-existence of anemia, vitamin A deficiency and growth retardation among children 24-84 months old in Maracaibo, Venezuela. Nutr Neuroscience. 2004;7(2):113–9.

    Article  CAS  Google Scholar 

  63. Khan NC, Huan PV, Nhien NV, Tuyen LD, de Pee S, Semba RD. Relationship of serum carotenoids and retinol with anaemia among pre-school children in the northern mountainous region of Vietnam. Public Health Nutr. 2010;13(11):1863–9.

    Article  Google Scholar 

  64. Merrill RD, Shamim AA, Ali H, Jahan N, Labrique AB, Schulze K, Christian P, West KP Jr. Iron status of women Is associated with the iron concentration of potable groundwater in rural Bangladesh. J Nutr. 2011;141:944–9.

    Article  CAS  Google Scholar 

  65. Muhilal, et al. Vitamin A-fortified monosodium glutamate and health, growth, and survival of children: a controlled field trial. Am J Clin Nutr. 1988;48(5):1271–6.

    Article  CAS  Google Scholar 

  66. Mejia LA, Arroyave G. The effect of vitamin A fortification of sugar on iron metabolism in preschool children in Guatemala. Am J Clin Nutr. 1982;36:87–93.

    Article  CAS  Google Scholar 

  67. Smith JC, et al. Vitamin A and zinc supplementation of preschool children. J Am Coll Nutr. 1999;18(3):213–22.

    Article  CAS  Google Scholar 

  68. Zhang X, et al. Effect of biscuits fortified with different doses of vitamin A on indices of vitamin A status, haemoglobin and physical growth levels of pre-school children in Chongqing. Public Health Nutr. 2010;13(9):1462–71.

    Article  Google Scholar 

  69. Wang Y, et al. Effect of vitamin A and Zn supplementation on indices of vitamin A status, haemoglobin level and defecation of children with persistent diarrhea. J Clin Biochem Nutr. 2016;59(1):58–64.

    Article  CAS  Google Scholar 

  70. Fahmida U, et al. Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin. Asia Pac J Clin Nutr. 2007;16(2):301–9.

    CAS  Google Scholar 

  71. Jimenez C, et al. A single dose of vitamin A improves haemoglobin concentration, retinol status and phagocytic function of neutrophils in preschool children. Br J Nutr. 2010;103(6):798–802.

    Article  CAS  Google Scholar 

  72. Alarcon K, et al. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia. Am J Clin Nutr. 2004;80(5):1276–82.

    Article  CAS  Google Scholar 

  73. Bloem MW, et al. Vitamin A intervention: short-term effects of a single, oral, massive dose on iron metabolism. Am J Clin Nutr. 1990;51(1):76–9.

    Article  CAS  Google Scholar 

  74. Semba RD, et al. Impact of vitamin a supplementation on hematological indicators of iron metabolism and protein status in children. Nutr Res. 1992;12(4):469–78.

    Article  CAS  Google Scholar 

  75. Barosi G. Inadequate erythropoietin response to anemia: definition and clinical relevance. Ann Hemato. 1994;68(5):215–23.

    Article  CAS  Google Scholar 

  76. Evans T. Regulation of hematopoiesis by retinoid signaling. Exp Hematol. 2005;33(9):1055–61.

    Article  CAS  Google Scholar 

  77. Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M. on behalf of Nutrition Impact Model Study Group (Anaemia). Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Global Health. 2013;1(1):E16–25.

    Article  Google Scholar 

  78. Semba RD, et al. Impact of vitamin A supplementation on anaemia and plasma erythropoietin concentrations in pregnant women: a controlled clinical trial. Eur J Haematol. 2001;66(6):389–95.

    Article  CAS  Google Scholar 

  79. van den Broek NR, et al. Randomised trial of vitamin A supplementation in pregnant women in rural Malawi found to be anaemic on screening by HemoCue. BJOG. 2006;113(5):569–76.

    Article  Google Scholar 

  80. Sun YY, et al. A combination of iron and retinol supplementation benefits iron status, IL-2 level and lymphocyte proliferation in anemic pregnant women. Asia Pac J Clin Nutr. 2010;19(4):513–9.

    CAS  Google Scholar 

  81. Ma AG, et al. Retinol and riboflavin supplementation decreases the prevalence of anemia in Chinese pregnant women taking iron and folic Acid supplements. J Nutr. 2008;138(10):1946–50.

    Article  CAS  Google Scholar 

  82. Ma AG, et al. Supplementation of iron alone and combined with vitamins improves haematological status, erythrocyte membrane fluidity and oxidative stress in anaemic pregnant women. Br J Nutr. 2010;104(11):1655–61.

    Article  CAS  Google Scholar 

  83. Kapil U, et al. The impact of a package of single mega dose of vitamin A and daily supplementation of iron, folic acid and vitamin C in improving hemoglobin levels. J Trop Pediatr. 2005;51(4):257–8.

    Article  Google Scholar 

  84. Kolsteren P, et al. Treatment for iron deficiency anaemia with a combined supplementation of iron, vitamin A and zinc in women of Dinajpur, Bangladesh. Eur J Clin Nutr. 1999;53(2):102–6.

    Article  CAS  Google Scholar 

  85. Yamini S, et al. Circulating levels of retinol, tocopherol and carotenoid in Nepali pregnant and postpartum women following long-term beta-carotene and vitamin A supplementation. Eur J Clin Nutr. 2001;55(4):252–9.

    Article  CAS  Google Scholar 

  86. Muslimatun S, et al. Weekly supplementation with iron and vitamin A during pregnancy increases hemoglobin concentration but decreases serum ferritin concentration in Indonesian pregnant women. J Nutr. 2001;131(1):85–90.

    Article  CAS  Google Scholar 

  87. Cook JD. Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol. 2005;18(2):319–32.

    Article  CAS  Google Scholar 

  88. Strube YN, Beard JL, Ross AC. Iron deficiency and marginal vitamin A deficiency affect growth, hematological indices and the regulation of iron metabolism genes in rats. J Nutr. 2002;132(12):3607–15.

    Article  CAS  Google Scholar 

  89. Beynen AC, et al. Iron status in rats fed a purified diet without vitamin A. Biol Trace Elem Res. 1992;35(1):81–4.

    Article  CAS  Google Scholar 

  90. Neumcke I, et al. Effects of pro- and antioxidative compounds on renal production of erythropoietin. Endocrinology. 1999;140(2):641–5.

    Article  CAS  Google Scholar 

  91. Cusick SE, et al. Short-term effects of vitamin A and antimalarial treatment on erythropoiesis in severely anemic Zanzibari preschool children. Am J Clin Nutr. 2005;82(2):406–12.

    Article  CAS  Google Scholar 

  92. Burgmann H, et al. Serum levels of erythropoietin in acute Plasmodium falciparum malaria. Am J Trop Med Hygiene. 1996;54(3):280–3.

    Article  CAS  Google Scholar 

  93. Rohner F, Namaste SML, Larson LM, Addo OY, Mei Z, Suchdev PS, Williams AM, Ashour FAS, Rawat R, Raiten DR, Northrop-Clewes CA. Adjusting soluble transferrin receptor concentrations for inflammation: biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am J Clin Nutr. 2017;106(Suppl):372S–282S.

    Article  Google Scholar 

  94. Stephensen CB, Leitz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Brit J Nutr. 2021:1–10. https://doi.org/10.1017/S0007114521000246.

  95. Larson LM, Guo J, Williams AM, Young MF, Ismally S, Addo OY, Thurnham D, Tanumihardjo SA, Suchdev PS, Northrop-Clewes CA. Approaches to assess vitamin A status in settings of inflammation: biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Nutrients. 2018;10:1100. https://doi.org/10.3390/nu10081100.

    Article  CAS  Google Scholar 

  96. Acheampong CO, Barffour MA, Schulze KJ, Chileshe J, Kalungwana N, Saimusantu W, West KP Jr, Palmer AC. Age-specific differences in magnitude of malaria-related anemia during low and high malaria seasons in rural Zambian children. eHaem. 2021;2:349–56.

    CAS  Google Scholar 

  97. Nussenblatt V, Semba RD. Micronutrient malnutrition and the pathogenesis of malarial anemia. Acta Trop. 2002;82(3):321–37.

    Article  CAS  Google Scholar 

  98. Ekvall H. Malaria and anemia. Curr Opin Hematol. 2003;10(2):108–14.

    Article  Google Scholar 

  99. Shankar AH. Nutritional modulation of malaria morbidity and mortality. J Infect Dis. 2000;182(Suppl 1):S37–53.

    Article  CAS  Google Scholar 

  100. Nabakwe EC, et al. Vitamin a deficiency and anaemia in young children living in a malaria endemic district of western Kenya. East Afr Med J. 2005;82(6):300–6.

    Article  CAS  Google Scholar 

  101. Barffour MA, Schulze KJ, Coles CL, Chileshe J, Kalungwana N, Arguello M, Siamusantu W, Moss WJ, West KP Jr, Palmer AC. High iron stores I low malaria season increase malaria risk in high transmission season in a prospective cohort of rural Zambian children. J Nutr. 2017;147:1531–6.

    Article  CAS  Google Scholar 

  102. Shankar AH, et al. Effect of vitamin A supplementation on morbidity due to Plasmodium falciparum in young children in Papua New Guinea: a randomised trial. Lancet. 1999;354(9174):203–9.

    Article  CAS  Google Scholar 

  103. Villamor E, et al. Vitamin A supplementation and other predictors of anemia among children from Dar Es Salaam, Tanzania. Am J Trop Med Hyg. 2000;62(5):590–7.

    Article  CAS  Google Scholar 

  104. Semba RD, Tang AM. Micronutrients and the pathogenesis of human immunodeficiency virus infection. Br J Nutr. 1999;81(3):181–9.

    Article  CAS  Google Scholar 

  105. Friis H, et al. HIV and other predictors of serum folate, serum ferritin, and hemoglobin in pregnancy: a cross-sectional study in Zimbabwe. Am J Clin Nutr. 2001;73(6):1066–73.

    Article  CAS  Google Scholar 

  106. Kumwenda N, et al. Antenatal vitamin A supplementation increases birth weight and decreases anemia among infants born to human immunodeficiency virus-infected women in Malawi. Clin Infect Dis. 2002;35(5):618–24.

    Article  CAS  Google Scholar 

  107. Miller MF, et al. Effect of maternal and neonatal vitamin A supplementation and other postnatal factors on anemia in Zimbabwean infants: a prospective, randomized study. Am J Clin Nutr. 2006;(1):212–22.

    Google Scholar 

  108. Fawzi WW, et al. Multivitamin supplementation improves hematologic status in HIV-infected women and their children in Tanzania. Am J Clin Nutr. 2007;85(5):1335–43.

    Article  CAS  Google Scholar 

  109. Chhagan MK, et al. Effect on longitudinal growth and anemia of zinc or multiple micronutrients added to vitamin A: a randomized controlled trial in children aged 6-24 months. BMC Public Health. 2010;10:145.

    Article  Google Scholar 

  110. Karyadi E, Schultink W, Nelwan RHH, Gross R, Amin Z, Dolmans WMV, van der Meer JWM, Hautvast JGAJ, West CE. Poor micronutrient status of active pulmonary tuberculosis patients in Indonesia. J Nutr. 2000;130:2953–8.

    Article  CAS  Google Scholar 

  111. Karyadi E, et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. Am J Clin Nutr. 2002;75(4):720–7.

    Article  CAS  Google Scholar 

  112. Zuin M, Rigatelli G, Quadretti L, Fogato L, Zuliani G, Roncon L. Prognostic role of anemia in COPVID-19 patients: a meta-analysis. Infect Dis Rep. 2021;13:930–7.

    Article  Google Scholar 

  113. Amine EK, et al. Comparative hematology during deficiencies of iron and vitamin A in the rat. J Nutr. 1970;100(9):1033–40.

    Article  CAS  Google Scholar 

  114. Roodenburg AJ, et al. Comparison between time-dependent changes in iron metabolism of rats as induced by marginal deficiency of either vitamin A or iron. Br J Nutr. 1994;71(5):687–99.

    Article  CAS  Google Scholar 

  115. García-Casal MN, et al. Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr. 1998;128(3):646–50.

    Article  Google Scholar 

  116. Walczyk T, et al. No enhancing effect of vitamin A on iron absorption in humans. Am J Clin Nutr. 2003;77(1):144–9.

    Article  CAS  Google Scholar 

  117. Davidsson L, et al. The effect of retinyl palmitate added to iron-fortified maize porridge on erythrocyte incorporation of iron in African children with vitamin A deficiency. Br J Nutr. 2003;2:337–43.

    Article  Google Scholar 

  118. Layrisse M, et al. New property of vitamin A and beta-carotene on human iron absorption: effect on phytate and polyphenols as inhibitors of iron absorption. Arch Latinoam Nutr. 2000;50(3):243–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith P. West Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gernand, A.D., Xu, X., West, K.P. (2022). Vitamin A in Nutritional Anemia. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics