Skip to main content

Iron Bioavailability: Enhancers and Inhibitors

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

Abstract

Iron in the diet exists in two forms: heme and nonheme. Heme iron is mainly obtained from animal sources, while nonheme iron is mostly from plant sources. Compared to nonheme iron, heme iron is well absorbed by the body and is not generally affected by the dietary factors. Dietary factors such as animal tissue (meat, fish, and poultry, MFP) and ascorbic acid (AA) are known to enhance, whereas phytate, polyphenols, and calcium are known to decrease nonheme iron absorption. Although the nature of the factor in MFP is not clear, enhancing effect was shown in many human studies. The positive influence of animal tissue has been attributed to unknown “factors” possibly proteins or other constituents that can prevent iron from polymerizing and maintain iron in a stable soluble form. AA is shown to overcome the inhibition even in the presence of phytate and polyphenols. Because of the reducing capability of ascorbic acid, it forms soluble chelates with iron, thereby preventing the formation of insoluble and unabsorbable iron compounds that may be formed with phytates and polyphenols. Phytate has been shown to inhibit nonheme iron absorption in a dose-dependent manner, but its content can be easily reduced by many simple food processing methods. The degree of inhibition by polyphenols depends on the type (food sources) and the amount of polyphenols in the diet. Although it is not that clear, the inhibition of iron absorption by calcium depends on the source of calcium (supplement vs dietary calcium) and the composition of the meal. The effect of all of the dietary factors is clear from single meal human studies, but magnitude of effect was diminished in the context of mixed diets that contained various enhancers and inhibitors. However, it is difficult to conduct those kinds of studies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurrell R, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010;91(5):1461S–7S.

    Article  CAS  Google Scholar 

  2. Armah SM, Carriquiry AL, Reddy MB. Total Iron Bioavailability From the US diet is lower than the current estimate. J Nutr. 2015;145(11):2617–21.

    Article  CAS  Google Scholar 

  3. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci Off J Isfahan Univ Med Sci. 2014;19(2):164–74.

    Google Scholar 

  4. Milman NT. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. J Nutr Metab. 2020;2020:7373498.

    Article  Google Scholar 

  5. Blanco-Rojo RVP. Iron bioavailability from food fortification to precision nutrition. A review. Innov Food Sci Emerg Technol. 2019;51:126–38.

    Article  CAS  Google Scholar 

  6. Hallberg L, Rossander-Hultén L, Brune M, Gleerup A. Calcium and iron absorption: mechanism of action and nutritional importance. Eur J Clin Nutr. 1992;46(5):317–27.

    CAS  Google Scholar 

  7. San Martin CD, Garri C, Pizarro F, Walter T, Theil EC, Núñez MT. Caco-2 intestinal epithelial cells absorb soybean ferritin by mu2 (AP2)-dependent endocytosis. J Nutr. 2008;138(4):659–66.

    Article  CAS  Google Scholar 

  8. Hoppler M, Schönbächler A, Meile L, Hurrell RF, Walczyk T. Ferritin-iron is released during boiling and in vitro gastric digestion. J Nutr. 2008;138(5):878–84.

    Article  CAS  Google Scholar 

  9. Lönnerdal B, Bryant A, Liu X, Theil EC. Iron absorption from soybean ferritin in nonanemic women. Am J Clin Nutr. 2006;83(1):103–7.

    Article  Google Scholar 

  10. Reddy MB, Cook JD. Effect of calcium intake on nonheme-iron absorption from a complete diet. Am J Clin Nutr. 1997;65(6):1820–5.

    Article  CAS  Google Scholar 

  11. Cook JD, Reddy MB. Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. Am J Clin Nutr. 2001;73(1):93–8.

    Article  CAS  Google Scholar 

  12. Reddy MB, Hurrell RF, Cook JD. Meat consumption in a varied diet marginally influences nonheme iron absorption in normal individuals. J Nutr. 2006;136(3):576–81.

    Article  CAS  Google Scholar 

  13. Bœch SB, Hansen M, Bukhave K, Jensen M, Sørensen SS, Kristensen L, et al. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. Am J Clin Nutr. 2003;77(1):173–9.

    Article  Google Scholar 

  14. Cook JD, Monsen ER. Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme iron absorption. Am J Clin Nutr. 1976;29(8):859–67.

    Article  CAS  Google Scholar 

  15. Björn-Rasmussen E, Hallberg L. Effect of animal proteins on the absorption of food iron in man. Nutr Metab. 1979;23(3):192–202.

    Article  Google Scholar 

  16. Cook JD, Monsen ER, Food iron absorption. I. Use of semisynthetic diet to study absorption of nonheme iron. Am J Clin Nutr. 1975;28(11):1289–95.

    Article  CAS  Google Scholar 

  17. Carpenter CE, Mahoney AW. Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr. 1992;31(4):333–67.

    Article  CAS  Google Scholar 

  18. Glahn RP, Van Campen DR. Iron uptake is enhanced in Caco-2 cell monolayers by cysteine and reduced cysteinyl glycine. J Nutr. 1997;127(4):642–7.

    Article  CAS  Google Scholar 

  19. Van Campen D, Gross E. Effect of histidine and certain other amino acids on the absorption of iron-59 by rats. J Nutr. 1969;99(1):68–74.

    Article  Google Scholar 

  20. Reddy MB, Cook JD. Assessment of dietary determinants of nonheme-iron absorption in humans and rats. Am J Clin Nutr. 1991;54(4):723–8.

    Article  CAS  Google Scholar 

  21. Storcksdieck genannt Bonsmann S, Hurrell RF. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci. 2007;72(1):S019–29.

    CAS  Google Scholar 

  22. Hurrell RF, Reddy MB, Juillerat M, Cook JD. Meat protein fractions enhance nonheme iron absorption in humans. J Nutr. 2006;136(11):2808–12.

    Article  CAS  Google Scholar 

  23. Swain JH, Tabatabai LB, Reddy MB. Histidine content of low-molecular-weight beef proteins influences nonheme iron bioavailability in Caco-2 cells. J Nutr. 2002;132(2):245–51.

    Article  CAS  Google Scholar 

  24. Huh EC, Hotchkiss A, Brouillette J, Glahn RP. Carbohydrate fractions from cooked fish promote iron uptake by Caco-2 cells. J Nutr. 2004;134(7):1681–9.

    Article  CAS  Google Scholar 

  25. Belluzzi A, Roda G, Tonon F, Soleti A, Caponi A, Tuci A, et al. A new iron free treatment with oral fish cartilage polysaccharide for iron deficiency chronic anemia in inflammatory bowel diseases: a pilot study. World J Gastroenterol. 2007;13(10):1575–8.

    Article  CAS  Google Scholar 

  26. Storcksdieck genannt Bonsmann S, Walczyk T, Renggli S, Hurrell RF. Nonheme iron absorption in young women is not influenced by purified sulfated and unsulfated glycosaminoglycans. J Nutr. 2007;137(5):1161–4.

    Article  CAS  Google Scholar 

  27. Armah CN, Sharp P, Mellon FA, Pariagh S, Lund EK, Dainty JR, et al. L-alpha-glycerophosphocholine contributes to meat’s enhancement of nonheme iron absorption. J Nutr. 2008;138(5):873–7.

    Article  CAS  Google Scholar 

  28. Kristensen MB, Hels O, Morberg C, Marving J, Bügel S, Tetens I. Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content. Br J Nutr. 2005;94(1):78–83.

    Article  CAS  Google Scholar 

  29. Jackson J, Williams R, McEvoy M, MacDonald-Wicks L, Patterson A. Is higher consumption of animal flesh foods associated with better iron status among adults in developed countries? A systematic review. Nutrients. 2016;8(2):89.

    Article  Google Scholar 

  30. Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, Car NG, et al. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr. 1991;53(2):537–41.

    Article  CAS  Google Scholar 

  31. Teucher B, Olivares M, Cori H. Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res. 2004;74:403–19.

    Article  CAS  Google Scholar 

  32. Latunde-Dada GO, van der Westhuizen J, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells Mol Dis. 2002;29(3):356–60.

    Article  CAS  Google Scholar 

  33. Cook JD, Monsen ER. Vitamin C, the common cold, and iron absorption. Am J Clin Nutr. 1977;30(2):235–41.

    Article  CAS  Google Scholar 

  34. Ballot D, Baynes RD, Bothwell TH, Gillooly M, MacFarlane BJ, MacPhail AP, et al. The effects of fruit juices and fruits on the absorption of iron from a rice meal. Br J Nutr. 1987;57(3):331–43.

    Article  CAS  Google Scholar 

  35. Gillooly M, Bothwell TH, Torrance JD, MacPhail AP, Derman DP, Bezwoda WR, et al. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr. 1983;49(3):331–42.

    Article  CAS  Google Scholar 

  36. Hallberg L, Brune M, Rossander L. The role of vitamin C in iron absorption. Int J Vitam Nutr Res Suppl. 1989;30:103–8.

    CAS  Google Scholar 

  37. Serna-Saldivar SO, Carrillo EP. Food uses of whole corn and dry-milled fractions. In: Corn: chemistry and technology. 3rd ed. Elsevier; 2018. p. 435–67.

    Google Scholar 

  38. Hunt JR, Gallagher SK, Johnson LAK. Effect of ascorbic acid on apparent iron absorption by women with low iron stores. Am J Clin Nutr. 1994;59(6):1381–5.

    Article  CAS  Google Scholar 

  39. Hurrell R, Bothwell T, Cook JD, Dary O, Davidsson L, Fairweather-Tait S, et al. The usefulness of elemental iron for cereal flour fortification: a SUSTAIN Task Force report. Sharing United States Technology to Aid in the Improvement of Nutrition. Nutr Rev. 2002;60(12):391–406.

    Article  Google Scholar 

  40. Abdulwaliyu I, Arekemase SO, Adudu JA, Batari ML, Egbule MN, Okoduwa SIR. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clin Nutr Exp. 2019;28:42–61.

    Article  Google Scholar 

  41. International Zinc Nutrition Consultative Group (IZiNCG), Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, et al. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004;25(1 SUPPL 2):S99–203.

    Google Scholar 

  42. Marie Minihane A, Rimbach G. Iron absorption and the iron binding and anti-oxidant properties of phytic acid. Int J Food Sci Technol. 2002;37(7):741–8.

    Article  Google Scholar 

  43. Sandberg A-S, Brune M, Carlsson N-G, Hallberg L, Skoglund E, Rossander-Hulthén L. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr. 1999;70(2):240–6.

    Article  CAS  Google Scholar 

  44. Hurrell RF, Juillerat MA, Reddy MB, Lynch SR, Dassenko SA, Cook JD. Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr. 1992;56(3):573–8.

    Article  CAS  Google Scholar 

  45. Hurrell RF. Phytic acid degradation as a means of improving iron absorption. J Int Vitaminol Nutr. 2004;74(6):445–52.

    Article  CAS  Google Scholar 

  46. Masud T, Mahmood T, Latif A, Sammi S, Hameed T. Influence of processing and cooking methodologies for reduction of Phytic acid content in Wheat (Triticum aestivum) varieties. J Food Process Preserv. 2007;31(5):583–94.

    Article  CAS  Google Scholar 

  47. Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 2015;52:676–84.

    Article  CAS  Google Scholar 

  48. Cook JD, Dassenko SA, Lynch SR. Assessment of the role of nonheme-iron availability in iron balance. Am J Clin Nutr. 1991;54(4):717–22.

    Article  CAS  Google Scholar 

  49. Armah SM, Boy E, Chen D, Candal P, Reddy MB. Regular consumption of a high-phytate diet reduces the inhibitory effect of phytate on nonheme-iron absorption in women with suboptimal iron stores. J Nutr. 2015;145(8):1735–9.

    Article  CAS  Google Scholar 

  50. Armah SM, Carriquiry A, Sullivan D, Cook JD, Reddy MB. A complete diet-based algorithm for predicting nonheme iron absorption in adults. J Nutr. 2013;143(7):1136–40.

    Article  CAS  Google Scholar 

  51. Petry N, Egli I, Zeder C, Walczyk T, Hurrell R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr. 2010;140(11):1977–82.

    Article  CAS  Google Scholar 

  52. Hurrell RF, Reddy M, Cook JD. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br J Nutr. 1999;81(4):289–95.

    Article  CAS  Google Scholar 

  53. Brune M, Rossander L, Hallberg L. Iron absorption and phenolic compounds: importance of different phenolic structures. Eur J Clin Nutr. 1989;43(8):547–57.

    CAS  Google Scholar 

  54. Disler PB, Lynch SR, Charlton RW, Torrance JD, Bothwell TH, Walker RB, et al. The effect of tea on iron absorption. Gut. 1975;16(3):193–200.

    Article  CAS  Google Scholar 

  55. Delimont NM, Fiorentino NM, Kimmel KA, Haub MD, Rosenkranz SK, Lindshield BL. Long-term dose-response condensed tannin supplementation does not affect iron status or bioavailability. Curr Dev Nutr. 2017;1(10).

    Google Scholar 

  56. Milman N, Byg KE, Ovesen L, Kirchhoff M, Jürgensen KSL. Iron status in Danish women, 1984-1994: a cohort comparison of changes in iron stores and the prevalence of iron deficiency and iron overload. Eur J Haematol. 2003;71(1):51–61.

    Article  CAS  Google Scholar 

  57. Hart JJ, Tako E, Wiesinger J, Glahn RP. Polyphenolic profiles of yellow bean seed coats and their relationship with iron bioavailability. J Agric Food Chem. 2020;68(3):769–78.

    Article  CAS  Google Scholar 

  58. Georgiades P, Pudney PDA, Rogers S, Thornton DJ, Waigh TA. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. PLoS One. 2014;9(8):e105302.

    Article  Google Scholar 

  59. Schlesier K, Kühn B, Kiehntopf M, Winnefeld K, Roskos M, Bitsch R, et al. Comparative evaluation of green and black tea consumption on the iron status of omnivorous and vegetarian people. Food Res Int. 2012;46(2):522–7.

    Article  CAS  Google Scholar 

  60. Cook JD, Dassenko SA, Whittaker P. Calcium supplementation: effect on iron absorption. Am J Clin Nutr. 1991;53(1):106–11.

    Article  CAS  Google Scholar 

  61. Roughead ZKF, Zito CA, Hunt JR. Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method. Am J Clin Nutr. 2005;82(3):589–97.

    Article  CAS  Google Scholar 

  62. Lönnerdal B. Calcium and iron absorption—mechanisms and public health relevance. Int J Vitam Nutr Res. 2010;80(4–5):293–9.

    Article  Google Scholar 

  63. Deehr MS, Dallal GE, Smith KT, Taulbee JD, Dawson-Hughes B. Effects of different calcium sources on iron absorption in postmenopausal women. Am J Clin Nutr. 1990;51(1):95–9.

    Article  CAS  Google Scholar 

  64. Grinder-Pedersen L, Bukhave K, Jensen M, Højgaard L, Hansen M. Calcium from milk or calcium-fortified foods does not inhibit nonheme-iron absorption from a whole diet consumed over a 4-d period. Am J Clin Nutr. 2004;80(2):404–9.

    Article  CAS  Google Scholar 

  65. Minihane AM, Fairweather-Tait SJ. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am J Clin Nutr. 1998;68(1):96–102.

    Article  CAS  Google Scholar 

  66. Toxqui L, Pérez-Granados AM, Blanco-Rojo R, Wright I, González-Vizcayno C, Vaquero MP. Effects of an iron or iron and vitamin D-fortified flavored skim milk on iron metabolism: a randomized controlled double-blind trial in iron-deficient women. J Am Coll Nutr. 2013;32(5):312–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju B. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, M.B., Agbemafle, I., Armah, S. (2022). Iron Bioavailability: Enhancers and Inhibitors. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics