Skip to main content

Sources of Iron: Diet, Supplemental, and Environmental

  • Chapter
  • First Online:
Nutritional Anemia

Part of the book series: Nutrition and Health ((NH))

  • 558 Accesses

Abstract

Even though iron is abundant in nature, it is estimated that two billion people are iron deficient. An important reason for this apparent paradox is the low bioavailability of many iron compounds, with bioavailability ranging from <2% for certain ferric compounds to 40% for heme iron. Dietary sources of iron include foods consumed daily (the common dietary sources of iron) but also foods intentionally enriched with iron (fortified foods), vitamin and mineral supplements containing iron, or foods or drinks contaminated with iron. In this chapter, we have given an overview of these different sources of iron intake and their relevance for human nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter KJ. A short history of nutritional science: Part 1 (1785–1885). J Nutr. 2003;133:638–45.

    Article  CAS  Google Scholar 

  2. Mackay HM. Anaemia in infancy: its prevalence and prevention. Arch Dis Child. 1928;3:117.

    Article  CAS  Google Scholar 

  3. Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. American Journal of Physiology-Gastrointestinal and Liver. Physiology. 2014;307:G397–409.

    CAS  Google Scholar 

  4. Milman NT. Dietary iron intake in women of reproductive age in Europe: a review of 49 studies from 29 countries in the period 1993–2015. J Nutr Metab. 2019;2019:7631306.

    Article  Google Scholar 

  5. Harika R, Faber M, Samuel F, Kimiywe J, Mulugeta A, Eilander A. Micronutrient status and dietary intake of iron, vitamin A, iodine, folate and zinc in women of reproductive age and pregnant women in Ethiopia, Kenya, Nigeria and South Africa: a systematic review of data from 2005 to 2015. Nutrients. 2017;9:1096.

    Article  Google Scholar 

  6. Ferguson EL, Watson L, Berger J, Chea M, Chittchang U, Fahmida U, Khov K, Kounnavong S, Le BM, Rojroongwasinkul N. Realistic food-based approaches alone may not ensure dietary adequacy for women and young children in South-East Asia. Matern Child Health J. 2019;23:55–66.

    Article  Google Scholar 

  7. Kongkachuichai R, Napatthalung P, Charoensiri R. Heme and nonheme iron content of animal products commonly consumed in Thailand. J Food Compos Anal. 2002;15:389–98.

    Article  CAS  Google Scholar 

  8. Wang FS, Lin CW. The effects of heating and chemical treatment on the haem and non-haem iron content of heat-induced porcine blood curd. J Sci Food Agric. 1994;65:209–13.

    Article  CAS  Google Scholar 

  9. Hurrell RF, Lynch SR, Trinidad TP, Dassenko SA, Cook JD. Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white. Am J Clin Nutr. 1988;47(1):102–7.

    Article  CAS  Google Scholar 

  10. Ziegler EE. Consumption of cow’s milk as a cause of iron deficiency in infants and toddlers. Nutr Rev. 2011;69(Suppl 1):S37–42.

    Article  Google Scholar 

  11. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet (London, England). 2019;393:447–92.

    Article  Google Scholar 

  12. Kawarazuka N, Béné C. Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Security. 2010;2:343–57.

    Article  Google Scholar 

  13. Roos N, Thorseng H, Chamnan C, Larsen T, Gondolf UH, Bukhave K, Thilsted SH. Iron content in common Cambodian fish species: perspectives for dietary iron intake in poor, rural households. Food Chem. 2007;104:1226–35.

    Article  CAS  Google Scholar 

  14. Roos N, Wahab MA, Hossain MAR, Thilsted SH. Linking human nutrition and fisheries: incorporating micronutrient-dense, small indigenous fish species in carp polyculture production in Bangladesh. Food Nutr Bull. 2007;28:S280–S93.

    Article  Google Scholar 

  15. Wheal MS, DeCourcy-Ireland E, Bogard JR, Thilsted SH, Stangoulis JC. Measurement of haem and total iron in fish, shrimp and prawn using ICP-MS: implications for dietary iron intake calculations. Food Chem. 2016;201:222–9.

    Article  CAS  Google Scholar 

  16. Roos N, Islam MM, Thilsted SH. Small indigenous fish species in Bangladesh: contribution to vitamin A, calcium and iron intakes. J Nutr. 2003;133:4021S–6S.

    Article  CAS  Google Scholar 

  17. Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH, D’Lima C, Mills DJ, Roscher M, Thilsted SH, Thorne-Lyman AL, et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature. 2019;574:95–8.

    Article  CAS  Google Scholar 

  18. Costello C, Cao L, Gelcich S, Cisneros-Mata MÁ, Free CM, Froehlich HE, Golden CD, Ishimura G, Maier J, Macadam-Somer I, et al. The future of food from the sea. Nature. 2020;588:95–100.

    Article  CAS  Google Scholar 

  19. van Huis A. Edible insects are the future? Proc Nutr Soc. 2016;75:294–305.

    Article  Google Scholar 

  20. Köhler R, Kariuki L, Lambert C, Biesalski H. Protein, amino acid and mineral composition of some edible insects from Thailand. J Asia Pac Entomol. 2019;22:372–8.

    Article  Google Scholar 

  21. Latunde-Dada GO, Yang W, Vera Aviles M. In vitro iron availability from insects and sirloin beef. J Agric Food Chem. 2016;64:8420–4.

    Article  CAS  Google Scholar 

  22. Imathiu S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020;18:1–11.

    Article  Google Scholar 

  23. Cherry P, O’Hara C, Magee PJ, McSorley EM, Allsopp PJ. Risks and benefits of consuming edible seaweeds. Nutr Rev. 2019;77:307–29.

    Article  Google Scholar 

  24. García-Casal MN, Pereira AC, Leets I, Ramírez J, Quiroga MF. High iron content and bioavailability in humans from four species of marine algae. J Nutr. 2007;137:2691–5.

    Article  Google Scholar 

  25. Rao PS, Mantri VA, Ganesan K. Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem. 2007;102:215–8.

    Article  CAS  Google Scholar 

  26. Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G. Aspectos nutricionales y toxicológicos de Spirulina (arthrospira). Nutr Hosp. 2015;32:34–40.

    Google Scholar 

  27. Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009;113:1033–6.

    Article  Google Scholar 

  28. Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on iron status in adults: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58:1359–74.

    Article  CAS  Google Scholar 

  29. Clarys P, Deliens T, Huybrechts I, Deriemaeker P, Vanaelst B, De Keyzer W, Hebbelinck M, Mullie P. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients. 2014;6(3):1318–32.

    Article  Google Scholar 

  30. Mohammed SH, Taye H, Larijani B, Esmaillzadeh A. Food taboo among pregnant Ethiopian women: magnitude, drivers, and association with anemia. Nutr J. 2019;18(1):19.

    Article  Google Scholar 

  31. Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev. 2016;74(7):421–31.

    Article  Google Scholar 

  32. Domellöf M, Lönnerdal B, Dewey KG, Cohen RJ, Hernell O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr. 2004;79(1):111–5.

    Article  Google Scholar 

  33. Cerami C. Iron nutriture of the fetus, neonate, infant, and child. Ann Nutr Metab. 2017;71(Suppl 3):8–14.

    Article  CAS  Google Scholar 

  34. Chantry CJ, Howard CR, Auinger P. Full breastfeeding duration and risk for iron deficiency in U.S. infants. Breastfeed Med. 2007;2(2):63–73.

    Article  Google Scholar 

  35. Dewey KG, Brown KH. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutr Bull. 2003;24(1):5–28.

    Article  Google Scholar 

  36. Wieringa FT, Berger J, Dijkhuizen MA, Hidayat A, Ninh NX, Utomo B, Wasantwisut E, Winichagoon P. Sex differences in prevalence of anaemia and iron deficiency in infancy in a large multi-country trial in South-East Asia. Br J Nutr. 2007;98:1070–6.

    Article  CAS  Google Scholar 

  37. Domellöf M, Lönnerdal B, Dewey KG, Cohen RJ, Rivera LL, Hernell O. Sex differences in iron status during infancy. Pediatrics. 2002;110:545–52.

    Article  Google Scholar 

  38. Peña-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;2015(7):CD004736.

    Google Scholar 

  39. Viteri FE, Berger J. Importance of pre-pregnancy and pregnancy iron status: can long-term weekly preventive iron and folic acid supplementation achieve desirable and safe status? Nutr Rev. 2005;63:S65–76.

    Article  Google Scholar 

  40. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, Dhingra U, Kabole I, Deb S, Othman MK, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet (London, England). 2006;367:133–43.

    Article  CAS  Google Scholar 

  41. Suchdev PS, Jefferds MED, Ota E, da Silva LK, De-Regil LM. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Cochrane Database Syst Rev. 2020;2(2):CD008959.

    Google Scholar 

  42. Paganini D, Zimmermann MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. Am J Clin Nutr. 2017;106(Suppl 6):1688S–93S.

    Article  Google Scholar 

  43. Dijkhuizen MA, Greffeille V, Roos N, Berger J, Wieringa FT. Interventions to improve micronutrient status of women of reproductive age in Southeast Asia: a narrative review on what works, what might work, and what doesn’t work. Matern Child Health J. 2019;23(Suppl 1):18–28.

    Article  Google Scholar 

  44. Van Thuy P, Berger J, Nakanishi Y, Khan NC, Lynch S, Dixon P. The use of NaFeEDTA-fortified fish sauce is an effective tool for controlling iron deficiency in women of childbearing age in rural Vietnam. Nutrition. 2005;135(11):2596–601.

    Google Scholar 

  45. Peña-Rosas JP, Mithra P, Unnikrishnan B, Kumar N, De-Regil LM, Nair NS, Garcia-Casal MN, Solon JA. Fortification of rice with vitamins and minerals for addressing micronutrient malnutrition. Cochrane Database Syst Rev. 2019;2019:CD009902. https://doi.org/10.1002/14651858.CD009902.pub2.

    Article  Google Scholar 

  46. Friesen VM, Mbuya MN, Aaron GJ, Pachón H, Adegoke O, Noor RA, Swart R, Kaaya A, Wieringa FT, Neufeld LM. Fortified foods are major contributors to apparent intakes of vitamin A and iodine, but not iron, in diets of women of reproductive age in 4 African countries. J Nutr. 2020;150(8):2183–90.

    Article  Google Scholar 

  47. Majumder S, Datta K, Datta SK. Rice biofortification: high iron, zinc, and vitamin-A to fight against “hidden hunger”. Agronomy. 2019;9:803.

    Article  CAS  Google Scholar 

  48. Athe R, Dwivedi R, Pati S, Mazumder A, Banset U. Meta-analysis approach on iron fortification and its effect on pregnancy and its outcome through randomized, controlled trials. J Family Med Primary Care. 2020;9:513–9.

    Article  Google Scholar 

  49. WHO. WHO guidelines approved by the guidelines review committee. guideline: intermittent iron and folic acid supplementation in menstruating women. Geneva: World Health Organization; 2011.

    Google Scholar 

  50. Ziauddin Hyder SM, Haseen F, Khan M, Schaetzel T, Jalal CSB, Rahman M, Lönnerdal B, Mannar V, Mehansho H. A multiple-micronutrient-fortified beverage affects hemoglobin, iron, and vitamin A status and growth in adolescent girls in Rural Bangladesh. J Nutr. 2007;137:2147–53.

    Article  Google Scholar 

  51. Tam E, Keats EC, Rind F, Das JK, Bhutta AZA. Micronutrient supplementation and fortification interventions on health and development outcomes among children under-five in low- and middle-income countries: a systematic review and meta-analysis. Nutrients. 2020;12:289.

    Article  CAS  Google Scholar 

  52. Waller AW, Andrade JE, Mejia LA. Performance factors influencing efficacy and effectiveness of iron fortification programs of condiments for improving anemia prevalence and iron status in populations: a systematic review. Nutrients. 2020;12:275.

    Article  Google Scholar 

  53. Connorton JM, Balk J. Iron biofortification of staple crops: lessons and challenges in plant genetics. Plant Cell Physiol. 2019;60:1447–56.

    Article  CAS  Google Scholar 

  54. Mutwiri LN, Kyallo F, Kiage B, Van der Schueren B, Matthys C. Can improved legume varieties optimize iron status in low- and middle-income countries? A systematic review. Adv Nutr. 2020;11:1315–24.

    Article  Google Scholar 

  55. Afify AE-MM, El-Beltagi HS, Abd El-Salam SM, Omran AA. Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS One. 2011;6:e25512.

    Article  CAS  Google Scholar 

  56. Baye K, Mouquet-Rivier C, Icard-Vernière C, Picq C, Guyot J-P. Changes in mineral absorption inhibitors consequent to fermentation of Ethiopian injera: implications for predicted iron bioavailability and bioaccessibility. Int J Food Sci Technol. 2014;49:174–80.

    Article  CAS  Google Scholar 

  57. Proulx AK, Reddy MB. Fermentation and lactic acid addition enhance iron bioavailability of maize. J Agric Food Chem. 2007;55:2749–54.

    Article  CAS  Google Scholar 

  58. Chawla P, Bhandari L, Sadh PK, Kaushik R. Impact of solid-state fermentation (Aspergillus oryzae) on functional properties and mineral bioavailability of black-eyed pea (Vigna unguiculata) seed flour. Cereal Chem. 2017;94:437–42.

    Article  CAS  Google Scholar 

  59. Gabaza M, Muchuweti M, Vandamme P, Raes K. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? Food Rev Intl. 2017;33:561–86.

    Article  CAS  Google Scholar 

  60. Adish AA, Esrey SA, Gyorkos TW, Jean-Baptiste J, Rojhani A. Effect of consumption of food cooked in iron pots on iron status and growth of young children: a randomised trial. Lancet. 1999;353(9154):712–6.

    Article  CAS  Google Scholar 

  61. Harvey PW, Dexter PB, Darnton-Hill I. The impact of consuming iron from non-food sources on iron status in developing countries. Public Health Nutr. 2000;3(4):375–83.

    Article  CAS  Google Scholar 

  62. Alves CA-O, Saleh A, Alaofè H. Iron-containing cookware for the reduction of iron deficiency anemia among children and females of reproductive age in low- and middle-income countries: a systematic review. PLoS One. 2019;14(9):e0221094.

    Article  CAS  Google Scholar 

  63. Sharieff W, Dofonsou J, Zlotkin S. Is cooking food in iron pots an appropriate solution for the control of anaemia in developing countries? A randomised clinical trial in Benin. Public Health Nutr. 2008;11(9):971–7.

    Article  Google Scholar 

  64. Bothwell T, Seftel H, Jacobs P, Torrance J, Baumslag N. Iron overload in Bantu subjects: studies on the availability of iron in Bantu beer. Am J Clin Nutr. 1964;14:47–51.

    Article  CAS  Google Scholar 

  65. Choma S, Alberts M, Urdal P. Effect of traditional beer consumption on the iron status of a rural South African population. South Afr J Clin Nutr. 2007;20:62–8.

    Article  Google Scholar 

  66. Charles CV, Summerlee AJ, Dewey CE. Iron content of Cambodian foods when prepared in cooking pots containing an iron ingot. Tropical Med Int Health. 2011;16(12):1518–24.

    Article  Google Scholar 

  67. Rappaport AA-O, Whitfield KC, Chapman GE, Yada RY, Kheang KM, Louise J, Summerlee AJ, Armstrong GR, Green TJ. Randomized controlled trial assessing the efficacy of a reusable fish-shaped iron ingot to increase hemoglobin concentration in anemic, rural Cambodian women. Am J Clin Nutr. 2017;106(2):667–74.

    Article  CAS  Google Scholar 

  68. Galan P, Cherouvrier F, Zohoun I, Zohoun T, Chauliac M, Hercberg S. Iron absorption from typical West African meals containing contaminating Fe. Br J Nutr. 1990;64:541–6.

    Article  CAS  Google Scholar 

  69. Greffeuille V, Polycarpe Kayodé AP, Icard-Vernière C, Gnimadi M, Rochette I, Mouquet-Rivier C. Changes in iron, zinc and chelating agents during traditional African processing of maize: effect of iron contamination on bioaccessibility. Food Chem. 2011;126:1800–7.

    Article  CAS  Google Scholar 

  70. Young SL. Pica in pregnancy: new ideas about an old condition. Annu Rev Nutr. 2010;30:403–22.

    Article  CAS  Google Scholar 

  71. Seim GL, Ahn CI, Bodis MS, Luwedde F, Miller DD, Hillier S, Tako E, Glahn RP, Young SL. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model. Food Funct. 2013;4:1263–70.

    Article  CAS  Google Scholar 

  72. Karakochuk CD, Murphy HM, Whitfield KC, Barr SI, Vercauteren SM, Talukder A, Porter K, Kroeun H, Eath M, McLean J, et al. Elevated levels of iron in groundwater in Prey Veng province in Cambodia: a possible factor contributing to high iron stores in women. J Water Health. 2014;13:575–86.

    Article  Google Scholar 

  73. Wieringa FT, Dahl M, Chamnan C, Poirot E, Kuong K, Sophonneary P, Sinuon M, Greuffeille V, Hong R, Berger J. The high prevalence of anemia in Cambodian children and women cannot be satisfactorily explained by nutritional deficiencies or hemoglobin disorders. Nutrients. 2016;8:348.

    Article  Google Scholar 

  74. Ahmed F, Khan MR, Shaheen N, Ahmed KMU, Hasan A, Chowdhury IA, Chowdhury R. Anemia and iron deficiency in rural Bangladeshi pregnant women living in areas of high and low iron in groundwater. Nutrition. 2018;51:46–52.

    Article  Google Scholar 

  75. Palanog AD, Calayugan MIC, Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA, Arocena EC, Cruz PC, Borromeo TH, Lalusin A, Hernandez JE, et al. Zinc and iron nutrition status in the Philippines population and local soils. Front Nutr. 2019;6:81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T. Wieringa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wieringa, F.T., Dijkhuizen, M.A., Berger, J. (2022). Sources of Iron: Diet, Supplemental, and Environmental. In: Karakochuk, C.D., Zimmermann, M.B., Moretti, D., Kraemer, K. (eds) Nutritional Anemia. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-14521-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14521-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14520-9

  • Online ISBN: 978-3-031-14521-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics