Skip to main content

In the Courts: Ethical and Legal Implications of Emerging Neuroscience Technologies Used for Forensic Purposes

Abstract

Dramatic advances in neuroscience have improved physicians’ abilities to diagnose and manage neurological and psychiatric disorders for their patients. Alongside established modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and functional MRI (fMRI), advanced neuroimaging technologies provide new tools for understanding normal human behavior and diagnosing neuropsychiatric disorders impacting human behavior. But the application of these novel technologies, designed to help patients in the treatment setting, to the forensic setting presents unique ethics challenges. Forensic psychiatry is a subspecialty in which scientific and clinical expertise is applied in legal contexts, and in specialized clinical consultations in areas such as risk assessment or employment. In contrast to the treatment setting where advancing the patient’s welfare is primary, the primary duty in forensic settings is to foster truth. Thus, an honest forensic opinion based on good science and evidence may not necessarily benefit the person being evaluated and could cause that person harm. Similarly, artificial intelligence (AI) and machine learning technology are applied to a growing number of clinical and forensic settings, bringing potential to transform how psychiatrists assess an individual’s risk for violence and risk for suicide. Despite this promise, however, these emerging technological advances present significant ethical dilemmas, medico-legal limitations, and the risk of misuse if applied unethically. In this chapter, recent neuroscientific advances in the fields of functional neuroimaging and AI “deep learning” algorithms are reviewed in detail along with the relevant legal and ethical framework, advantages, and potential drawbacks.

Keywords

  • Psychiatry
  • Forensic
  • Ethics
  • Bioethics
  • Legal
  • Neuroscience
  • Neuroimaging
  • Artificial intelligence
  • AI

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glancy GD, Ash P, Bath EP, Buchanan A, Fedoroff P, Frierson RL, et al. AAPL practice guideline for the forensic assessment. J Am Acad Psychiatry Law. 2015;43(2 Suppl):S3–53.

    Google Scholar 

  2. AAPL. Ethics Guidelines for the Practice of Forensic Psychiatry; 2005. https://aapl.org/ethics.htm.

  3. Appelbaum PS. A theory of ethics for forensic psychiatry. J Am Acad Psychiatry Law. 1997;25(3):233–47.

    CAS  Google Scholar 

  4. Darby WC, Weinstock R. Facing the elephant in the evaluation room: confronting bias and striving for objectivity (part I). Am Acad Psychiatry Law Newslett. 2020;45(1):21–6.

    Google Scholar 

  5. Darby WC, Weinstock R. Facing the elephant in the evaluation room: confronting bias and striving for objectivity (part II). Am Acad Psychiatry Law Newslett. 2020;45(2). Pages 16, 20, and 22.

    Google Scholar 

  6. Darby WC, Weinstock R. Resolving ethics dilemmas in forensic practice. In: Griffith E, editor. Ethics dilemmas in forensic psychiatry and psychology practice. New York, NY: Columbia University Press; 2018. p. 7–22.

    Google Scholar 

  7. Weinstock R. Dialectical principlism: an approach to finding the most ethical action. J Am Acad Psychiatry Law. 2015;43(1):10–20.

    Google Scholar 

  8. Beauchamp TL, Childress JF. Principles of biomedical ethics. 7th ed. New York, NY: Oxford University Press; 2013.

    Google Scholar 

  9. Gaudet LM, Marchant G. Under the radar: neuroimaging evidence in the criminal courtroom. Drake Law Rev; 2016.

    Google Scholar 

  10. Moriarty JC. Flickering admissibility: neuroimaging evidence in the U.S. courts. Behav Sci Law. 2008;26(1):29–49.

    CrossRef  Google Scholar 

  11. Farahany NA. Neuroscience and behavioral genetics in US criminal law: an empirical analysis. J Law Biosci. 2015;2(3):485–509.

    Google Scholar 

  12. Morse SJ. The future of neuroscientific evidence. In: Henderson C, Epstein J, editors. The future of evidence: how science and technology will change the practice of law. Chicago, IL: American Bar Association; 2011. p. 137–63.

    Google Scholar 

  13. Morse SJ. Brain imaging in the courtroom: the quest for legal relevance. AJOB Neurosci. 2016;5(2):24–7.

    CrossRef  Google Scholar 

  14. Scarpazza C, Ferracuti S, Miolla A, Sartori G. The charm of structural neuroimaging in insanity evaluations: guidelines to avoid misinterpretation of the findings. Transl Psychiatry. 2018;8(1):227.

    CrossRef  CAS  Google Scholar 

  15. Darby RR. Neuroimaging abnormalities in neurological patients with criminal behavior. Curr Neurol Neurosci Rep. 2018;18(8):47.

    CrossRef  Google Scholar 

  16. Darby RR, Edersheim J, Price BH. What patients with behavioral-variant frontotemporal dementia can teach us about moral responsibility. AJOB Neurosci. 2016;7(4):193–201.

    CrossRef  Google Scholar 

  17. Kellmeyer P. Ethical and legal implications of the methodological crisis in neuroimaging. Camb Q Healthc Ethics. 2017;26(4):530–54.

    CrossRef  Google Scholar 

  18. Moriarty JC, Langleben DD, Provenzale JM. Brain trauma, PET scans and forensic complexity. Behav Sci Law. 2013;31(6):702–20.

    CrossRef  Google Scholar 

  19. Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115–26.

    CrossRef  CAS  Google Scholar 

  20. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5.

    CrossRef  CAS  Google Scholar 

  21. Darby RR, Joutsa J, Fox MD. Network localization of heterogeneous neuroimaging findings. Brain. 2019;142(1):70–9.

    CrossRef  Google Scholar 

  22. Darby RR, Fox MD. Reply: heterogeneous neuroimaging findings, damage propagation and connectivity: an integrative view. Brain. 2019;142(5):e18.

    CrossRef  Google Scholar 

  23. Faigman DL, Monahan J, Slobogin C. Group to individual (G2i) inference in scientific expert testimony. Univ Chicago Law Rev. 2014;81(2):417–80.

    Google Scholar 

  24. Scarpazza C, Sartori G, De Simone MS, Mechelli A. When the single matters more than the group: very high false positive rates in single case voxel based morphometry. NeuroImage. 2013;70:175–88.

    CrossRef  CAS  Google Scholar 

  25. Scarpazza C, Nichols TE, Seramondi D, Maumet C, Sartori G, Mechelli A. When the single matters more than the group (II): addressing the problem of high false positive rates in single case voxel based morphometry using non-parametric statistics. Front Neurosci. 2016;10:6.

    CrossRef  Google Scholar 

  26. Tetreault AM, Phan T, Orlando D, Lyu I, Kang H, Landman B, et al. Network localization of clinical, cognitive, and neuropsychiatric symptoms in Alzheimer’s disease. Brain. 2020;143(4):1249–60.

    CrossRef  Google Scholar 

  27. Ganis G, Rosenfeld JP, Meixner J, Kievit RA, Schendan HE. Lying in the scanner: covert countermeasures disrupt deception detection by functional magnetic resonance imaging. NeuroImage. 2011;55(1):312–9.

    CrossRef  Google Scholar 

  28. Hugh TB, Dekker SW. Hindsight bias and outcome bias in the social construction of medical negligence: a review. J Law Med. 2009;16(5):846–57.

    Google Scholar 

  29. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, et al. Incidental findings on brain MRI in the general population. N Engl J Med. 2007;357(18):1821–8.

    CrossRef  CAS  Google Scholar 

  30. Darby RR, Horn A, Cushman F, Fox MD. Lesion network localization of criminal behavior. Proc Natl Acad Sci U S A. 2018;115(3):601–6.

    CrossRef  CAS  Google Scholar 

  31. Darby RR, Joutsa J, Burke MJ, Fox MD. Lesion network localization of free will. Proc Natl Acad Sci U S A. 2018;115(42):10792–7.

    CrossRef  CAS  Google Scholar 

  32. Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379(23):2237–45.

    CrossRef  CAS  Google Scholar 

  33. Darby RR, Laganiere S, Pascual-Leone A, Prasad S, Fox MD. Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain. 2017;140(2):497–507.

    CrossRef  Google Scholar 

  34. Boes AD, Prasad S, Liu H, Liu Q, Pascual-Leone A, Caviness VS Jr, et al. Network localization of neurological symptoms from focal brain lesions. Brain. 2015;138(Pt 10):3061–75.

    CrossRef  Google Scholar 

  35. Ferguson MR, Yu CK, Poliakov AV, Friedman SD, McClellan JM. Capgras syndrome: neuroanatomical assessment of brain MRI findings in an adolescent patient. Brain. 2017;140(7):e43.

    CrossRef  Google Scholar 

  36. Darby RR, Dickerson BC. Dementia, decision making, and capacity. Harv Rev Psychiatry. 2017;25(6):270–8.

    CrossRef  Google Scholar 

  37. Rosen J. The brain on the stand. The New York Times Magazine. 2007.

    Google Scholar 

  38. Weisberg DS, Keil FC, Goodstein J, Rawson E, Gray JR. The seductive allure of neuroscience explanations. J Cogn Neurosci. 2008;20(3):470–7.

    CrossRef  Google Scholar 

  39. McCabe DP, Castel AD. Seeing is believing: the effect of brain images on judgments of scientific reasoning. Cognition. 2008;107(1):343–52.

    CrossRef  Google Scholar 

  40. Farah MJ, Hook CJ. The seductive allure of "seductive allure". Perspect Psychol Sci. 2013;8(1):88–90.

    CrossRef  Google Scholar 

  41. Hughes V. Science in court: head case. Nature. 2010;464(7287):340–2.

    CrossRef  CAS  Google Scholar 

  42. Meltzer CC, Sze G, Rommelfanger KS, Kinlaw K, Banja JD, Wolpe PR. Guidelines for the ethical use of neuroimages in medical testimony: report of a multidisciplinary consensus conference. AJNR Am J Neuroradiol. 2014;35(4):632–7.

    CrossRef  CAS  Google Scholar 

  43. Boundy M. The government can read your mind: can the constitution stop it? Hastings Law J. 2012;63(6):1627–44.

    Google Scholar 

  44. Shen FX. Neuroscience, mental privacy, and the law. Harv J L & Pub Pol'y. 2013;36:653.

    Google Scholar 

  45. Kraft CJ, Giordano J. Integrating brain science and law: neuroscientific evidence and legal perspectives on protecting individual liberties. Front Neurosci. 2017;11:621.

    CrossRef  Google Scholar 

  46. Farah MJ, Hutchinson JB, Phelps EA, Wagner AD. Functional MRI-based lie detection: scientific and societal challenges. Nat Rev Neurosci. 2014;15(2):123–31.

    CrossRef  CAS  Google Scholar 

  47. Gamer M, Klimecki O, Bauermann T, Stoeter P, Vossel G. fMRI-activation patterns in the detection of concealed information rely on memory-related effects. Soc Cogn Affect Neurosci. 2012;7(5):506–15.

    CrossRef  Google Scholar 

  48. Rissman J, Greely HT, Wagner AD. Detecting individual memories through the neural decoding of memory states and past experience. Proc Natl Acad Sci U S A. 2010;107(21):9849–54.

    CrossRef  CAS  Google Scholar 

  49. Aspinwall LG, Brown TR, Tabery J. The double-edged sword: does biomechanism increase or decrease judges' sentencing of psychopaths? Science. 2012;337(6096):846–9.

    CrossRef  CAS  Google Scholar 

  50. Schweitzer NJ, Saks MJ. Neuroimage evidence and the insanity defense. Behav Sci Law. 2011;29(4):592–607.

    CrossRef  CAS  Google Scholar 

  51. Kulich R, Maciewicz R, Scrivani SJ. Functional magnetic resonance imaging (FMRI) and expert testimony. Pain Med. 2009;10(2):373–80.

    CrossRef  Google Scholar 

  52. Brown T, Murphy E. Through a scanner darkly: functional neuroimaging as evidence of a criminal defendant's past mental states. Stanford Law Rev. 2010;62(4):1119–208.

    Google Scholar 

  53. Feigl GC, Hiergeist W, Fellner C, Schebesch KM, Doenitz C, Finkenzeller T, et al. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg. 2014;81(1):144–50.

    CrossRef  Google Scholar 

  54. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.

    CrossRef  CAS  Google Scholar 

  55. Large M, Kaneson M, Myles N, Myles H, Gunaratne P, Ryan C. Meta-analysis of longitudinal cohort studies of suicide risk assessment among psychiatric patients: heterogeneity in results and lack of improvement over time. PLoS One. 2016;11(6):e0156322.

    CrossRef  Google Scholar 

  56. Douglas T, Pugh J, Singh I, Savulescu J, Fazel S. Risk assessment tools in criminal justice and forensic psychiatry: the need for better data. Eur Psychiatry. 2017;42:134–7.

    CrossRef  CAS  Google Scholar 

  57. Zheng L, Wang O, Hao S, Ye C, Liu M, Xia M, et al. Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records. Transl Psychiatry. 2020;10(1):72.

    CrossRef  Google Scholar 

  58. Singer N. In screening for suicide risk, Facebook takes on tricky public health role. The New York Times; 2018.

    Google Scholar 

  59. van Eijk G. Socioeconomic marginality in sentencing: the built-in bias in risk assessment tools and the reproduction of social inequality. Punish Soc. 2017;19(4):463–81.

    CrossRef  Google Scholar 

  60. Simmons R. Quantifying criminal procedure: how to unlock the potential of big data in our criminal justice system. Mich St L Rev. 2016;947:947–1017.

    Google Scholar 

  61. Penn State. Using artificial intelligence to detect discrimination. ScienceDaily. ScienceDaily; 2019. www.sciencedaily.com/releases/2019/07/190710121649.htm.

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Connor Darby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Darby, W.C., MacIntyre, M., Cockerill, R.G., Stephens, D.B., Weinstock, R., Darby, R.R. (2023). In the Courts: Ethical and Legal Implications of Emerging Neuroscience Technologies Used for Forensic Purposes. In: Roberts, L.W. (eds) Ethics and Clinical Neuroinnovation. Springer, Cham. https://doi.org/10.1007/978-3-031-14339-7_10

Download citation