Skip to main content

Radionuclides in the Management of Leptomeningeal Metastasis: Framework and Opportunities

  • Chapter
  • First Online:
Radiopharmaceuticals in the Management of Leptomeningeal Metastasis
  • 124 Accesses

Abstract

This chapter surveys the framework under which radiopharmaceuticals are used for the assessment of CSF flow and therapy of leptomeningeal metastasis (LM). The scientific basis is reviewed for development of radiopharmaceuticals for use in LM. The opportunities and limitations in choices of radiopharmaceuticals, imaging, and dosimetry schemes are discussed. Potential novel radiopharmaceuticals and novel use of existing radiopharmaceuticals are examined for future design of radiopharmaceutical trials in LM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker B. Cerebrospinal fluid iodide. Am J Phys. 1961;201:1149–51.

    Article  CAS  Google Scholar 

  2. Madsen JR, et al. Cerebrospinal fluid anion transport: studies of pertechnetate in unanesthetized sheep. Neurosurgery. 1985;17(5):778–83.

    Article  CAS  PubMed  Google Scholar 

  3. Coben LA, Smith KR. Iodide transfer at four cerebrospinal fluid sites in the dog: evidence for spinal iodide carrier transport. Exp Neurol. 1969;23(1):76–90.

    Article  CAS  PubMed  Google Scholar 

  4. Post RM, Allen FH, Ommaya AK. Cerebrospinal fluid flow and iodide 131 transport in the spinal subarachnoid space. Life Sci. 1974;14(10):1885–94.

    Article  CAS  PubMed  Google Scholar 

  5. Lashford LS, et al. A pilot study of 131I monoclonal antibodies in the therapy of leptomeningeal tumors. Cancer. 1988;61(5):857–68.

    Article  CAS  PubMed  Google Scholar 

  6. Bigner DD, et al. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1–14 F (ab')2—a preliminary report. J Neurooncol. 1995;24(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, et al. Subsecond total-body imaging using ultrasensitive positron emission tomography. Proc Natl Acad Sci U S A. 2020;117(5):2265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pandit-Taskar N, et al. Biodistribution and dosimetry of intraventricularly administered (124)I-omburtamab in patients with metastatic leptomeningeal tumors. J Nucl Med. 2019;60(12):1794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moseley RP, Papanastassiou V, Zalutsky MR. Immunoreactivity, pharmacokinetics and bone marrow dosimetry of intrathecal radioimmunoconjugates. Int J Cancer. 1992;52(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  10. Moseley RP, et al. Intrathecal administration of 131I radiolabelled monoclonal antibody as a treatment for neoplastic meningitis. Br J Cancer. 1990;62(4):637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hesterman JY, et al. Three-dimensional dosimetry for radiation safety estimates from intrathecal administration. J Nucl Med. 2017;58(10):1672–8.

    Article  CAS  PubMed  Google Scholar 

  12. van Dieren EB, et al. A dosimetric model for intrathecal treatment with 131I and 67Ga. Int J Radiat Oncol Biol Phys. 1994;30(2):447–54.

    Article  PubMed  Google Scholar 

  13. Stabin MEJ. The radiation dosimetry of intrathecally administered radionuclides. In: Sixth international radiopharmaceutical dosimetry symposium. ORISE; 1999. 99-0164. p. 5–514.

    Google Scholar 

  14. Brown MT, et al. Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: phase I trial results. Clin Cancer Res. 1996;2(6):963–72.

    CAS  PubMed  Google Scholar 

  15. Hicks RJ, et al. (64)Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy. J Nucl Med. 2019;60(6):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laffon E, de Clermont H, Marthan R. An abbreviated therapy-dosimetric equation for the companion diagnostic/therapeutic [(64/67)Cu]Cu-SARTATE. EJNMMI Res. 2021;11(1):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The author also thanks Dr. E. Edmund Kim of the University of California, Irvine for serving as collaborator on protocol DR10-0344 to evaluate patient studies while in M.D. Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin C. L. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, F.C.L. (2022). Radionuclides in the Management of Leptomeningeal Metastasis: Framework and Opportunities. In: Wong, F.C. (eds) Radiopharmaceuticals in the Management of Leptomeningeal Metastasis. Springer, Cham. https://doi.org/10.1007/978-3-031-14291-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14291-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14290-1

  • Online ISBN: 978-3-031-14291-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics