Skip to main content

Unit Root Test Combination via Random Forests

  • 357 Accesses

Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

There is a wide variety of non-seasonal and seasonal unit root tests. However, it is not always obvious which tests can be relied upon due to uncertainties in identifying the data generating process, often with respect to the presence of deterministic terms and the initial conditions. We evaluate the size and power of a large set of unit root tests on time series that are simulated to be representative of economic time series in the M4 competition data. Furthermore, using a conditional random forest-based elimination algorithm, we assess which tests should be combined to improve the performance of each individual test.

Keywords

  • ARIMA time series
  • Conditional inference trees
  • Monte Carlo simulation
  • Sequential testing
  • Supervised machine learning

The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Deutsche Bundesbank or the European Central Bank. The authors thank Uwe Hassler, Mehdi Hosseinkouchack and participants of the 2020 Conference on Machine Learning of Dynamic Processes and Time Series Analysis and of the 2021 International Conference on Time Series and Forecasting for valuable comments.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To accommodate weaker assumptions about the errors, the KPSS test requires a consistent long-variance estimator rather than a variance estimator.

  2. 2.

    In our case, yi is binary (k = 1). However, k = 3 could also be used if we considered the combination of possibilities of having seasonal and non-seasonal unit roots.

  3. 3.

    Alternatively, though less conservative, we can condition only on those predictors \(\mathbf {{x}}^C_j\) whose correlation with xj exceeds a certain threshold.

  4. 4.

    For computational reasons and parsimony, the tests have been performed with minimal lag length. Seasonal differences and the seasonal status of the series are not considered. The finite-sample critical values that we obtained from our own simulations in R (version 3.5.1) are very similar to the ones tabulated in the original papers (details are available upon request).

  5. 5.

    Similar results are obtained for a nominal 5% significance level.

References

  1. Ayat, L., Burridge, P.: Unit root tests in the presence of uncertainty about the non-stochastic trend. J. Econometrics 95, 71–96 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Beaulieu, J.J., Miron, J.A.: Seasonal unit roots in aggregate U.S. data. J. Econometrics 55, 305–328 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res. 9, 2015–2033 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    MATH  Google Scholar 

  5. Cario, M.C., Nelson, B.L.: Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Technical Report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois, 1–19 (1997)

    Google Scholar 

  6. Clements, M.P., Hendry, D.F.: Forecasting with difference-stationary and trend-stationary models. Economet. J. 4, S1–S19 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Cochrane, J.H.: A critique of the application of unit root tests. J. Econ. Dyn. Control 15, 275–284 (1991)

    MathSciNet  MATH  Google Scholar 

  8. DeJong, D.N., Nankervis, J.C., Savin, N.E., Whiteman, C.H.: Integration versus trend stationarity in time series. Econometrica 60, 423–433 (1992)

    MathSciNet  MATH  Google Scholar 

  9. DeJong, D.N., Nankervis, J.C., Savin, N.E., Whiteman, C.H.: The power problems in time series with autoregressive errors. J. Econometrics 53, 323–343 (1992)

    MathSciNet  Google Scholar 

  10. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Dickey, D.A., Fuller, W.A.: Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057–1072 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Dickey, D.A., Hasza, D.P., Fuller, W.A.: Testing for unit roots in seasonal time series. J. Am. Stat. Assoc. 79, 355–367 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Diebold, F.X., Rudebusch, G.D.: On the Dickey-Fuller tests against fractional alternatives. Econ. Lett. 35, 155–160 (1991)

    MathSciNet  Google Scholar 

  14. Elliott, G., Müller, U.K.: Minimizing the impact of the initial condition on testing for unit roots. J. Econometrics 135, 285–310 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Elliott, G., Rothenberg, T.J., Stock, J.H.: Efficient tests for an autoregressive unit root. Econometrica 64, 813–836 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Ernst, P.A., Shepp, L.A., Wyner, A.J.: Yule’s “nonsense correlation” solved!. Ann. Stat. 45, 1789–1809 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Franses, P.H.: Seasonality, non-stationarity and the forecasting of monthly time series. Int. J. Forecasting 7, 199–208 (1991)

    Google Scholar 

  18. Fuller, W.A.: Introduction to Statistical Time Series. Wiley, New York (1976)

    MATH  Google Scholar 

  19. Gómez, V., Maravall, A.: Automatic Modeling Methods for Univariate Series. In: Peña, D., Tiao, G.C., Tsay, R.S. (eds.) A Course in Time Series Analysis, pp. 171–201. Wiley, New York (2001)

    Google Scholar 

  20. Granger, C.W.J., Newbold, P.: Spurious regressions in econometrics. J. Econometrics 2, 111–120 (1974)

    MATH  Google Scholar 

  21. Hansen, B.E., Racine, J.S.: Bootstrap model averaging unit root inference. McMaster University, Department of Economics Working Paper No. 2018-09 (2018)

    Google Scholar 

  22. Harvey, D.I., Leybourne, S.J., Taylor, A.M.R.: Unit root testing in practice: dealing with uncertainty over the trend and initial condition. Economet. Theor. 25, 587–636 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Hassler, U., Hosseinkouchack, M.: Understanding nonsense correlation between (independent) random walks in finite samples. Stat. Pap. 63, 181–195 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006)

    MathSciNet  Google Scholar 

  25. Hylleberg, S., Engle, R.F., Granger, C.W.J., Yoo, B.S.: Seasonal integration and cointegration. J. Econometrics 44, 215–238 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econometrics 54, 159–178 (1992)

    MATH  Google Scholar 

  27. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 Competition: Results, findings, conclusion and way forward. Int. J. Forecasting 34, 802–808 (2018)

    Google Scholar 

  28. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecasting 36, 54–74 (2020)

    Google Scholar 

  29. Müller, U.K., Elliott, G.: Tests for unit roots and the initial condition. Econometrica 71, 1269–1286 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Ng, S., Perron, P.: Lag length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Ollech, D., Webel, K.: A random forest-based approach to combining and ranking seasonality tests. J. Economet. Method. forthcoming (2022)

    Google Scholar 

  32. Osborn, D.R., Chui, A.P.L., Smith, J.P., Birchenhall, C.R.: Seasonality and the order of intergration for consumption. Oxford B. Econ. Stat. 50, 361–377 (1988)

    Google Scholar 

  33. Palm, F.C., Smeekes, S., Urbain, J.-P.: Bootstrap unit-root tests: comparison and extensions. J. Time Ser. Anal. 29, 371–401 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Park, J.Y.: Bootstrap unit root tests. Econometrica 71, 1845–1895 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Perron, P.: Trends and random walks in macroeconomic time series – Further evidence from a new approach. J. Econ. Dyn. Control 12, 297–332 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Phillips, P.C.B.: Understanding spurious regressions in econometrics. J. Econometrics 33, 311–340 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Phillips, P.C.B.: Time series regression with a unit root. Econometrica 55, 277–301 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Phillips, P.C.B., Perron, P.: Testing for a unit root in time series regression. Biometrika 75, 335–346 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Psaradakis, Z.: Bootstrap tests for an autoregressive unit root in the presence of weakly dependent errors. J. Time Ser. Anal. 22, 577–594 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Rodrigues, P.M.M., Osborn, D.R.: Performance of seasonal unit root tests for monthly data. J. Appl. Stat. 26, 985–1004 (1999)

    MATH  Google Scholar 

  41. Said, S.E., Dickey, D.A.: Testing for unit roots in autoregressive moving average models of unknown order. Biometrika 71, 599–607 (1984)

    MathSciNet  MATH  Google Scholar 

  42. Schwert, G.W.: Tests for unit roots: a Monte Carlo investigation. J. Bus. Econ. Stat. 7, 147–159 (1989)

    MathSciNet  Google Scholar 

  43. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance for random forests. BMC Bioinformatics 9, Article 307 (2008)

    Google Scholar 

  44. Stone, C.J., Hansen, M.H., Kooperberg, C., Truong, Y.K.: Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture. Ann. Stat. 25, 1371–1470 (1997)

    MATH  Google Scholar 

  45. Swensen, A.R.: Bootstrapping unit root tests for integrated processes. J. Time Ser. Anal. 24, 99–126 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Webel, K., Ollech, D.: An overall seasonality test based on recursive feature elimination in conditional random forests. Proc. Int. Conf. Time Ser. Forecasting, 20–31 (2018)

    Google Scholar 

  47. West, K.D.: A note on the power of least squares tests for a unit root. Econ. Lett. 24, 249–252 (1987)

    MathSciNet  MATH  Google Scholar 

  48. Wolters, J., Hassler, U.: Unit root testing. Allg. Stat. Arch. 90, 43–58 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Yule, G.U.: Why do we sometimes get nonsense correlations between time series? A study in sampling and the nature of time series. J. R. Stat. Soc. 89, 1–63 (1926)

    MATH  Google Scholar 

  50. Zivot, E., Andrews, D.W.K.: Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 10, 251–270 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Nocciola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nocciola, L., Ollech, D., Webel, K. (2023). Unit Root Test Combination via Random Forests. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds) Theory and Applications of Time Series Analysis and Forecasting. ITISE 2021. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-14197-3_3

Download citation