Skip to main content

Investigating High School Graduates’ Basis for Argumentation: Considering Local Organisation, Epistemic Value, and Modal Qualifier When Analysing Proof Constructions

  • Chapter
  • First Online:
Practice-Oriented Research in Tertiary Mathematics Education

Part of the book series: Advances in Mathematics Education ((AME))

  • 532 Accesses

Abstract

The present study is about high school graduates’ basis for argumentation in elementary arithmetic. Besides knowing the elements of the basis for argumentation, the question arises in how far individual understandings of these components differ. We conducted task-based interviews focussing on learners’ usage and meaning of statements in terms of their embeddedness in a local organisation, the epistemic values assigned to them, and respective effects on the conclusion’s modal qualifier. We want to highlight the following results: While all graduates accept definitions and rules for term manipulation, there is no consensus concerning the statements involved. Furthermore, the individuals’ epistemic values concerning the statements involved affect their usage in a chain of arguments and the individuals’ evaluation of the conclusion. Although the assessments of a local organisation of mathematical content differ, the epistemic values seem to be decisive for the individual evaluation of the conclusion. Thus, we extend the existing theory by investigating the meaning of epistemic value in the context of the basis for argumentation and its effects on the individual’s proof constructions. For practice-oriented research, we contribute to the ongoing discussion about the learning of proof in school mathematics by investigating the basis for argumentation of high school graduates in arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term “elementary arithmetic” to summarize the mathematical content covering properties of the natural numbers and divisibility issues.

  2. 2.

    Marks are scaled from 1 to 4, 1 being the best mark.

  3. 3.

    Marks in school subjects are scaled from 0 to 15, 15 being the best mark.

References

  • Baumert, J., Bos, W., & Watermann, R. (1998). TIMSS/III. Schülerleistungen in Mathematik und den Naturwissenschaften am Ende der Sekundarstufe 2 im internationalen Vergleich. Max-Planck-Institut für Bildungsforschung.

    Google Scholar 

  • Biehler, R., & Kempen, L. (2013). Students` use of variables and examples in their transition from generic proof to formal proof. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 86–95). Middle East Technical University.

    Google Scholar 

  • Brunner, E. (2014). Mathematisches Argumentieren, Begründen und Beweisen. Grundlagen, Befunde und Konzepte. Springer Spektrum.

    Google Scholar 

  • Bürger, H. (1979). Beweisen im Mathematikunterricht – Möglichkeiten der Gestaltung in der Sekundarstufe I und II. [Proving in schoolmathematics – possibilites for sedoncdary school.] In W. Dörfler & R. Fischer (Eds.), Beweisen im Mathematikunterricht. Vorträge des 2. internationalen Symposiums für “Didaktik der Mathematik” in Klagenfurt (pp. 103–134). Hölder-Pichler-Tempsky.

    Google Scholar 

  • Coe, R., & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics students. British Educational Research Journal, 20(1), 41–53. https://doi.org/10.1080/0141192940200105

    Article  Google Scholar 

  • Duval, R. (1991). Structure du raisonnement deductif et apprentissage de la demonstration. Educational Studies in Mathematics, 22(3), 233–261. https://doi.org/10.2307/3482298

    Article  Google Scholar 

  • Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 137–161). Sense Publishers.

    Google Scholar 

  • Edwards, L. D. (1998). Odds and evens: Mathematical reasoning and informal proof among high school students. The Journal of Mathematical Behavior, 17(4), 489–504. https://doi.org/10.1016/S0732-3123(99)00002-4

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. D. Reidel Publishing Company.

    Google Scholar 

  • Goldin, G. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517–546). Erlbaum.

    Google Scholar 

  • Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3–21. https://doi.org/10.1007/s10649-006-9059-8

    Article  Google Scholar 

  • Kempen, L., & Biehler, R. (2019a). Fostering first-year pre-service teachers’ proof competencies. ZDM, 51(5), 731–746. https://doi.org/10.1007/s11858-019-01035-x

    Article  Google Scholar 

  • Kempen, L., & Biehler, R. (2019b). Pre-service teachers’ benefits from an inquiry-based transition-to-proof course with a focus on generic proofs. International Journal of Research in Undergraduate Mathematics Education, 5(1), 27–55. https://doi.org/10.1007/s40753-018-0082-9

    Article  Google Scholar 

  • Kempen, L., Krämer, S., & Biehler, R. (2020). Investigating high school graduates’ personal meaning of the notion of “mathematical proof”. In T. Hausberger, M. Bosch, & F. Chellougui (Eds.), Proceedings of the third conference of the International Network for Didactic Research in University Mathematics (pp. 358–367). University of Carthage and INDRUM.

    Google Scholar 

  • Kitcher, P. (1984). The nature of mathematical knowledge. Oxford University Press.

    Google Scholar 

  • Knipping, C. (2003). Beweisprozesse in der Unterrichtspraxis. Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich. Franzbecker Verlag.

    Google Scholar 

  • Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving processes. ZDM, 40(3), 427. https://doi.org/10.1007/s11858-008-0095-y

    Article  Google Scholar 

  • Knuth, E., Choppin, J., Slaughter, M., & Sutherland, J. (2002). Mapping the conceptual terrain of middle school students’ competencies in justifying and proving. In Proceedings of the 24th annual meeting for the psychology of mathematics education – North America, v.4 (pp. 1693–1700). GA.

    Google Scholar 

  • Krämer, S. (2019). Beweisvorstellungen von Abiturientinnen und Abiturienten – Eine qualitative Interviewstudie auf der Grundlage individueller Beweiskonstruktionen. [high school graduates’ personal meaning of the notion of “mathematical proof” – a qualitative interview study based on individual proof constructions.] [master thesis]. Paderborn University.

    Google Scholar 

  • Mayring, P. (2014). Qualitative content analysis. Theoretical foundation, basic procedures and software solution. Beltz.

    Google Scholar 

  • Reiss, K., & Heinze, A. (2000). Begründen und Beweisen im Verständnis von Abiturienten. In Beiträge zum Mathematikunterricht 2000 (pp. 520–523). Franzbecker.

    Google Scholar 

  • Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289–321. https://doi.org/10.2307/30034869

    Article  Google Scholar 

  • Tietze, U.-P., Klika, M., & Wolpers, H. (1997). Mathematikunterricht in der Sekundarstufe II. [mathematics teaching in upper secondary school.] Vieweg + Teubner Verlag.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge University Press.

    Google Scholar 

  • Weber, K., Lew, K., & Mejía-Ramos, J. P. (2020). Using expectancy value theory to account for individuals’ mathematical justifications. Cognition and Instruction, 38(1), 27–56. https://doi.org/10.1080/07370008.2019.1636796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leander Kempen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kempen, L. (2022). Investigating High School Graduates’ Basis for Argumentation: Considering Local Organisation, Epistemic Value, and Modal Qualifier When Analysing Proof Constructions. In: Biehler, R., Liebendörfer, M., Gueudet, G., Rasmussen, C., Winsløw, C. (eds) Practice-Oriented Research in Tertiary Mathematics Education. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-14175-1_10

Download citation

Publish with us

Policies and ethics