Skip to main content

Airway Management During Mechanical Ventilation: COVID-19

  • Chapter
  • First Online:
Personalized Mechanical Ventilation

Abstract

The disease caused by the new SARS-CoV-2 can elicit a violent, dysregulated host immune response that can lead to severe results in most of these older patients as ARDS, multiple-organ failure, and death. Acute respiratory distress syndrome (ARDS) is defined as hypoxemia secondary to a rapid onset of non-cardiogenic pulmonary edema. The airway management in a patient with COVID-19 should be carried out considering several aspects. Once it is decided to intubate the patient, use a rapid induction sequence. When signs of respiratory distress are associated with severe hypoxemia, patients should be managed as soon as possible according to the pulmonary phenotypes; however, management of mechanical ventilation must be personalized; if possible, use low tidal volume with 6 mL/kg of predicted body weight. There is no consensus regarding the best PEEP value; several guidelines recommended keeping Pplat 30 cmH2O in patients with ARDS. There are no available studies that describe the clinical evolution of COVID-19 patients ventilated in the prone position; intermittent doses of neuromuscular blocking agents to facilitate lung-protective ventilation, and tracheostomy, remain necessary in some patients with COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Millan-Oñate J, Rodríguez-Morales AJ, Camacho-Moreno G, Mendoza Ramírez H, Rodríguez-Sabogal IA, Álvarez-Moreno C. A new emerging zoonotic virus of concern: the 2019 novel coronavirus (COVID-19). Infection [Internet]. 2020 [05/15/2020];24(3).

    Google Scholar 

  2. Palacios Cruz M, Santos E, Velázquez Cervantes MA, León JM. COVID-19, a global public health emergency. Rev Clin Esp [Internet]. 2020 [05/15/2020].

    Google Scholar 

  3. World Health Organization. 2019-nCoV outbreak is an emergency of international concern [Internet]. World Health Organization, Regional Office for Europe; 2020 [cited 31 Jan 2020].

    Google Scholar 

  4. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19—11 March 2020 [Internet]. World Health Organization; 2020 [cited 11 Mar 2020].

    Google Scholar 

  5. Down B, Kulkarni S, Ahmed Khan AH, Barker B, Tang I. Novel coronavirus (COVID-19) infection: what a doctor on the frontline needs to know. Ann Med Surg (Lond). 2020;55:24.

    Article  Google Scholar 

  6. Sánchez DJ, Peniche MK, Martínez RE, Cortés RJ, Rivera SG, Diaz PG, et al. False beliefs of acid-base disorders. Coulomb Minute Intensive Care. 2018; https://doi.org/10.1016/j.acci.2018.06.006.

  7. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–42. https://doi.org/10.1001/jama.2020.2648.

    Article  CAS  Google Scholar 

  8. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20. https://doi.org/10.1056/NEJMoa2002032.

    Article  CAS  Google Scholar 

  9. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81. https://doi.org/10.1016/S2213-2600(20)30079-5.

    Article  CAS  Google Scholar 

  10. Phan LT, Nguyen TV, Luong QC, et al. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med. 2020;382(9):872–4.

    Article  Google Scholar 

  11. Riviello ED, Kiviri W, Twagirumugabe T, Mueller A, Banner-Goodspeed VM, Officer L, et al. Hospital incidence and outcomes of ARdS using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med. 2016;193(1):52–9.

    Article  Google Scholar 

  12. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585.

    Article  CAS  Google Scholar 

  13. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schenfeld DA, Warre LB, et al. Comparison of the SpO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132:410–7.

    Article  Google Scholar 

  14. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anaesth [Internet]. 2020 [cited 05/15/2020];67.

    Google Scholar 

  15. Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res [Internet]. 2020 [cited 05/15/2020];7.

    Google Scholar 

  16. Cheung JC, Ho LT, Cheng JV, Cham EYK, Lam KN. Staff safety during emergency airway management for COVID-19 in Hong Kong. Lancet Respir Med [Internet]. 2020 [cited 05/15/2020];8.

    Google Scholar 

  17. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS, Force ADT. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  18. Gattinoni L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099–102. https://doi.org/10.1007/s00134-020-06033-2.

    Article  CAS  Google Scholar 

  19. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13.

    Article  CAS  Google Scholar 

  20. Thompson BT, Bernard GR. ARDS Network (NHLBI) studies: successes and challenges in ARDS clinical research. Crit Care Clin. 2011;27:459–68.

    Article  Google Scholar 

  21. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A, Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  22. Writing Group for the PReVENT Investigators. Effect of a low vs intermediate tidal volume strategy on ventilator- free days in intensive care unit patients without ARDS: a randomized clinical trial. JAMA. 2018;320:1872–80.

    Article  Google Scholar 

  23. Ashbaugh D, Boyd Bigelow D, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967;290:319–23.

    Article  Google Scholar 

  24. Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med. 2006;32:24–33.

    Article  Google Scholar 

  25. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.

    Article  CAS  Google Scholar 

  26. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.

    Article  Google Scholar 

  27. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Taylor Thompson B, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    Article  Google Scholar 

  28. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE, Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.

    Article  CAS  Google Scholar 

  29. Guo L, Xie J, Huang Y, Pan C, Yang Y, Qiu H, Liu L. Higher PEEP improves outcomes in ARDS patients with clinically objective positive oxygenation response to PEEP: a systematic review and meta-analysis. BMC Anesthesiol. 2018;18:172.

    Article  CAS  Google Scholar 

  30. Yasuda H, Nishimura T, Kamo T, Sanui M, Nango E, Abe T, Takebayashi T, Lefor AK, Hashimoto S. Optimal plateau pressure for patients with acute respiratory distress syndrome: a protocol for a systematic review and meta- analysis with meta-regression. BMJ Open. 2017;7:e015091.

    Article  Google Scholar 

  31. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, Adhikari NKJ, Amato MBP, Branson R, Brower RG, Ferguson ND, Gajic O, Gattinoni L, Hess D, Mancebo J, Meade MO, McAuley DF, Pesenti A, Ranieri VM, Rubenfeld GD, Rubin E, Seckel M, Slutsky AS, Talmor D, Thompson BT, Wunsch H, Uleryk E, Brozek J, Brochard LJ, American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.

    Article  Google Scholar 

  32. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.

    Article  Google Scholar 

  33. Lamm WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994;150:184–93.

    Article  CAS  Google Scholar 

  34. Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ. Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med. 2000;28:295–303.

    Article  CAS  Google Scholar 

  35. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  CAS  Google Scholar 

  36. Bloomfield R, Noble DW, Sudlow A. Prone position for acute respiratory failure in adults. Cochrane Database Syst Rev. 2015;2015:CD008095.

    Google Scholar 

  37. Mora-Arteaga JA, Bernal-Ramirez OJ, Rodriguez SJ. The effects of prone position ventilation in patients with acute respiratory distress syndrome. A systematic review and metaanalysis. Med Int. 2015;39:359–72.

    CAS  Google Scholar 

  38. Lee JM, Bae W, Lee YJ, Cho YJ. The efficacy and safety of prone positional ventilation in acute respiratory distress syndrome: updated study-level meta-analysis of 11 randomized controlled trials. Crit Care Med. 2014;42:1252–62.

    Article  Google Scholar 

  39. Alhazzani W, Moller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440–69. https://doi.org/10.1097/CCM.0000000000004363.

    Article  CAS  Google Scholar 

  40. The Australian and New Zealand Intensive Care Society COVID-19 Guidelines. https://www.anzicscom.au/wp-content/uploads/2020/03/ANZICS-COVID-19-Guidelines-Version-1pdf. Accessed 17 June 2020.

  41. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.

    Article  CAS  Google Scholar 

  42. Mehta AB, Syeda SN, Bajpayee L, Cooke CR, Walkey AJ, Wiener RS. Trends in tracheostomy for mechanically ventilated patients in the United States. Am J Respir Crit Care Med. 2015;192:446–54.

    Article  Google Scholar 

  43. McGrath BA, Wallace S, Goswamy J. Laryngeal oedema associated with COVID-19 complicating airway management. Anesthesia. 2020;75(7):972. https://doi.org/10.1111/anae.15092.

    Article  CAS  Google Scholar 

  44. Hosokawa K, Nishimura M, Egi M, Vincent J-L. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care. 2015;19:424–12.

    Article  Google Scholar 

  45. McGrath BA, Brenner MJ, Warrillow SJ, Pandian V, Arora A, Cameron TS, Añon JM, Martínez GH, Truog RD, Block SD, Lui GCY, McDonald C, Rassekh CH, Atkins J, Qiang L, Vergez S, Dulguerov P, Zenk J, Antonelli M, Pelosi P, Walsh BK, Ward E, Shang Y, Gasparini S, Donati A, Singer M, Openshaw PJM, Tolley N, Markel H, Feller-Kopman DJ. Tracheostomy in the COVID-19 era: global and multidisciplinary guidance. Lancet Respir Med. 2020;8:717–25. https://doi.org/10.1016/S2213-2600(20)30230-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez, C., Hidalgo, J., Hidalgo, A., Sinclair De Frías, J.E. (2022). Airway Management During Mechanical Ventilation: COVID-19. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics