Skip to main content

Mechanical Ventilation in Neurocritical Care Patient

  • Chapter
  • First Online:
Personalized Mechanical Ventilation
  • 856 Accesses

Abstract

Mechanical ventilation is not uncommon for patients admitted to the neurologic critical care units as often patients with acute brain injury such as ischemic or hemorrhagic strokes and traumatic brain injury lose their ability to protect their airway, leading to aspiration pneumonia and respiratory failure requiring endotracheal intubation and mechanical ventilation. Furthermore, lung injury in neurocritical care patients poses a unique challenge as neurointensivists strive to find the right balance of lung-protective ventilation while mitigating secondary brain injury through evaluation and advanced monitoring of the patient’s cerebral pathophysiology. Every step of securing the airway to mechanical ventilation and eventually extubation or tracheostomy has its own particular considerations and recommendations in neurocritically ill patients despite lack of strong data to date.

This chapter highlights key challenges in managing neurocritically ill patients’ airway, ventilation, and liberation from mechanical ventilation and highlighting special scenarios for pulmonary complications in patients with acute brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asehnoune K, Roquilly A, Cinotti R. Respiratory management in patients with severe brain injury. Crit Care. 2018;22(1):76. https://doi.org/10.1186/s13054-018-1994-0.

    Article  Google Scholar 

  2. Borsellino B, Schultz MJ, Gama de Abreu M, Robba C, Bilotta F. Mechanical ventilation in neurocritical care patients: a systematic literature review. Expert Rev Respir Med. 2016;10(10):1123–32. https://doi.org/10.1080/17476348.2017.1235976.

    Article  CAS  Google Scholar 

  3. Li Y, Liu C, Xiao W, Song T, Wang S. Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care. 2020;32(1):272–85. https://doi.org/10.1007/s12028-019-00773-w.

    Article  CAS  Google Scholar 

  4. Hannawi Y, Hannawi B, Rao CP, Suarez JI, Bershad EM. Stroke-associated pneumonia: major advances and obstacles. Cerebrovasc Dis. 2013;35(5):430–43. https://doi.org/10.1159/000350199.

    Article  CAS  Google Scholar 

  5. Smith CJ, Bray BD, Hoffman A, Meisel A, Heuschmann PU, Wolfe CD, et al. Can a novel clinical risk score improve pneumonia prediction in acute stroke care? A UK multicenter cohort study. J Am Heart Assoc. 2015;4(1):e001307. https://doi.org/10.1161/JAHA.114.001307.

    Article  Google Scholar 

  6. Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40. https://doi.org/10.1007/s12028-011-9605-9.

    Article  Google Scholar 

  7. Cook TM, Woodall N, Harper J, Benger J, Audit FN, P. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth. 2011;106(5):632–42. https://doi.org/10.1093/bja/aer059.

    Article  CAS  Google Scholar 

  8. Simpson GD, Ross MJ, McKeown DW, Ray DC. Tracheal intubation in the critically ill: a multi-centre national study of practice and complications. Br J Anaesth. 2012;108(5):792–9. https://doi.org/10.1093/bja/aer504.

    Article  CAS  Google Scholar 

  9. Feldman JL, Del Negro CA, Gray PA. Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol. 2013;75:423–52. https://doi.org/10.1146/annurev-physiol-040510-130049.

    Article  CAS  Google Scholar 

  10. Guyenet PG, Bayliss DA. Neural control of breathing and CO2 homeostasis. Neuron. 2015;87(5):946–61. https://doi.org/10.1016/j.neuron.2015.08.001.

    Article  CAS  Google Scholar 

  11. Robba C, Poole D, McNett M, Asehnoune K, Bosel J, Bruder N, et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397–410. https://doi.org/10.1007/s00134-020-06283-0.

    Article  Google Scholar 

  12. von Elm E, Schoettker P, Henzi I, Osterwalder J, Walder B. Pre-hospital tracheal intubation in patients with traumatic brain injury: systematic review of current evidence. Br J Anaesth. 2009;103(3):371–86. https://doi.org/10.1093/bja/aep202.

    Article  Google Scholar 

  13. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211.

    Article  Google Scholar 

  14. Seder DB, Jagoda A, Riggs B. Emergency neurological life support: airway, ventilation, and sedation. Neurocrit Care. 2015;23(Suppl 2):S5–22. https://doi.org/10.1007/s12028-015-0164-3.

    Article  CAS  Google Scholar 

  15. Pavlov I, Medrano S, Weingart S. Apneic oxygenation reduces the incidence of hypoxemia during emergency intubation: a systematic review and meta-analysis. Am J Emerg Med. 2017;35(8):1184–9. https://doi.org/10.1016/j.ajem.2017.06.029.

    Article  Google Scholar 

  16. Walls RMMM. Manual of emergency airway management. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  17. Higgs A, McGrath BA, Goddard C, Rangasami J, Suntharalingam G, Gale R, et al. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth. 2018;120(2):323–52. https://doi.org/10.1016/j.bja.2017.10.021.

    Article  CAS  Google Scholar 

  18. Rajajee V, Riggs B, Seder DB. Emergency neurological life support: airway, ventilation, and sedation. Neurocrit Care. 2017;27(Suppl 1):4–28. https://doi.org/10.1007/s12028-017-0451-2.

    Article  Google Scholar 

  19. Kill C, Risse J, Wallot P, Seidl P, Steinfeldt T, Wulf H. Videolaryngoscopy with glidescope reduces cervical spine movement in patients with unsecured cervical spine. J Emerg Med. 2013;44(4):750–6. https://doi.org/10.1016/j.jemermed.2012.07.080.

    Article  Google Scholar 

  20. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, Fourth Edition. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  Google Scholar 

  21. Walls RM. Rapid-sequence intubation in head trauma. Ann Emerg Med. 1993;22(6):1008–13. https://doi.org/10.1016/s0196-0644(05)82743-x.

    Article  CAS  Google Scholar 

  22. Salhi B, Stettner E. In defense of the use of lidocaine in rapid sequence intubation. Ann Emerg Med. 2007;49(1):84–6. https://doi.org/10.1016/j.annemergmed.2006.09.003.

    Article  Google Scholar 

  23. Reynolds SF, Heffner J. Airway management of the critically ill patient: rapid-sequence intubation. Chest. 2005;127(4):1397–412. https://doi.org/10.1378/chest.127.4.1397.

    Article  Google Scholar 

  24. Chan CM, Mitchell AL, Shorr AF. Etomidate is associated with mortality and adrenal insufficiency in sepsis: a meta-analysis. Crit Care Med. 2012;40(11):2945–53. https://doi.org/10.1097/CCM.0b013e31825fec26.

    Article  CAS  Google Scholar 

  25. Wyte SR, Shapiro HM, Turner P, Harris AB. Ketamine-induced intracranial hypertension. Anesthesiology. 1972;36(2):174–6. https://doi.org/10.1097/00000542-197202000-00021.

    Article  CAS  Google Scholar 

  26. Langsjo JW, Maksimow A, Salmi E, Kaisti K, Aalto S, Oikonen V, et al. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology. 2005;103(2):258–68. https://doi.org/10.1097/00000542-200508000-00008.

    Article  Google Scholar 

  27. Cohen L, Athaide V, Wickham ME, Doyle-Waters MM, Rose NG, Hohl CM. The effect of ketamine on intracranial and cerebral perfusion pressure and health outcomes: a systematic review. Ann Emerg Med. 2015;65(1):43–51 e2. https://doi.org/10.1016/j.annemergmed.2014.06.018.

    Article  Google Scholar 

  28. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69. https://doi.org/10.1097/00000542-200601000-00022.

    Article  CAS  Google Scholar 

  29. Abel M, Eisenkraft JB. Anesthetic implications of myasthenia gravis. Mt Sinai J Med. 2002;69(1-2):31–7.

    Google Scholar 

  30. Lahiri S, Mayer SA, Fink ME, Lord AS, Rosengart A, Mangat HS, et al. Mechanical ventilation for acute stroke: a multi-state population-based study. Neurocrit Care. 2015;23(1):28–32. https://doi.org/10.1007/s12028-014-0082-9.

    Article  Google Scholar 

  31. Roch A, Michelet P, Jullien AC, Thirion X, Bregeon F, Papazian L, et al. Long-term outcome in intensive care unit survivors after mechanical ventilation for intracerebral hemorrhage. Crit Care Med. 2003;31(11):2651–6. https://doi.org/10.1097/01.CCM.0000094222.57803.B4.

    Article  Google Scholar 

  32. Huynh T, Messer M, Sing RF, Miles W, Jacobs DG, Thomason MH. Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. 2002;53(3):488–92; discussion 92–3. https://doi.org/10.1097/00005373-200209000-00016.

    Article  Google Scholar 

  33. Pelosi P, Rocco PR. The lung and the brain: a dangerous cross-talk. Crit Care. 2011;15(3):168. https://doi.org/10.1186/cc10259.

    Article  Google Scholar 

  34. Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–63. https://doi.org/10.1097/CCM.0000000000001189.

    Article  Google Scholar 

  35. Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C, et al. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). Crit Care. 2020;24(1):158. https://doi.org/10.1186/s13054-020-02875-w.

    Article  Google Scholar 

  36. Aghadavoudi O, Alikiaii B, Sadeghi F. Comparison of respiratory and hemodynamic stability in patients with traumatic brain injury ventilated by two ventilator modes: Pressure regulated volume control versus synchronized intermittent mechanical ventilation. Adv Biomed Res. 2016;5:175. https://doi.org/10.4103/2277-9175.190991.

    Article  Google Scholar 

  37. Schirmer CM, Heilman CB, Bhardwaj A. Pneumocephalus: case illustrations and review. Neurocrit Care. 2010;13(1):152–8. https://doi.org/10.1007/s12028-010-9363-0.

    Article  Google Scholar 

  38. Schirmer-Mikalsen K, Vik A, Skogvoll E, Moen KG, Solheim O, Klepstad P. Intracranial pressure during pressure control and pressure-regulated volume control ventilation in patients with traumatic brain injury: a randomized crossover trial. Neurocrit Care. 2016;24(3):332–41. https://doi.org/10.1007/s12028-015-0208-8.

    Article  Google Scholar 

  39. Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174–81. https://doi.org/10.1007/s12028-016-0328-9.

    Article  Google Scholar 

  40. Muench E, Bauhuf C, Roth H, Horn P, Phillips M, Marquetant N, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33(10):2367–72. https://doi.org/10.1097/01.ccm.0000181732.37319.df.

    Article  Google Scholar 

  41. Nemer SN, Caldeira JB, Azeredo LM, Garcia JM, Silva RT, Prado D, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26(1):22–7. https://doi.org/10.1016/j.jcrc.2010.04.015.

    Article  Google Scholar 

  42. Della Torre V, Badenes R, Corradi F, Racca F, Lavinio A, Matta B, et al. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J Thorac Dis. 2017;9(12):5368–81. https://doi.org/10.21037/jtd.2017.11.03.

    Article  Google Scholar 

  43. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. https://doi.org/10.1056/NEJM200005043421801.

    Article  Google Scholar 

  44. Bouma GJ, Muizelaar JP. Cerebral blood flow in severe clinical head injury. New Horiz. 1995;3(3):384–94.

    CAS  Google Scholar 

  45. Williamson CA, Sheehan KM, Tipirneni R, Roark CD, Pandey AS, Thompson BG, et al. The association between spontaneous hyperventilation, delayed cerebral ischemia, and poor neurological outcome in patients with subarachnoid hemorrhage. Neurocrit Care. 2015;23(3):330–8. https://doi.org/10.1007/s12028-015-0138-5.

    Article  Google Scholar 

  46. Esnault P, Roubin J, Cardinale M, D’Aranda E, Montcriol A, Cungi PJ, et al. Spontaneous hyperventilation in severe traumatic brain injury: incidence and association with poor neurological outcome. Neurocrit Care. 2019;30(2):405–13. https://doi.org/10.1007/s12028-018-0639-0.

    Article  CAS  Google Scholar 

  47. Chesnut R, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, et al. A management algorithm for adult patients with both brain oxygen and intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2020;46(5):919–29. https://doi.org/10.1007/s00134-019-05900-x.

    Article  Google Scholar 

  48. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9. https://doi.org/10.3171/jns.1991.75.5.0731.

    Article  CAS  Google Scholar 

  49. Carrera E, Schmidt JM, Fernandez L, Kurtz P, Merkow M, Stuart M, et al. Spontaneous hyperventilation and brain tissue hypoxia in patients with severe brain injury. J Neurol Neurosurg Psychiatry. 2010;81(7):793–7. https://doi.org/10.1136/jnnp.2009.174425.

    Article  Google Scholar 

  50. Dastur CK, Yu W. Current management of spontaneous intracerebral haemorrhage. Stroke Vasc Neurol. 2017;2(1):21–9. https://doi.org/10.1136/svn-2016-000047.

    Article  Google Scholar 

  51. Ni YN, Wang YM, Liang BM, Liang ZA. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19(1):53. https://doi.org/10.1186/s12890-019-0810-1.

    Article  Google Scholar 

  52. Brucken A, Kaab AB, Kottmann K, Rossaint R, Nolte KW, Weis J, et al. Reducing the duration of 100% oxygen ventilation in the early reperfusion period after cardiopulmonary resuscitation decreases striatal brain damage. Resuscitation. 2010;81(12):1698–703. https://doi.org/10.1016/j.resuscitation.2010.06.027.

    Article  Google Scholar 

  53. Fallenius M, Raj R, Reinikainen M, Bendel S, Skrifvars MB. Association between high arterial oxygen tension and long-term survival after spontaneous intracerebral hemorrhage. Crit Care Med. 2016;44(1):180–7. https://doi.org/10.1097/CCM.0000000000001281.

    Article  CAS  Google Scholar 

  54. Rincon F, Kang J, Maltenfort M, Vibbert M, Urtecho J, Athar MK, et al. Association between hyperoxia and mortality after stroke: a multicenter cohort study. Crit Care Med. 2014;42(2):387–96. https://doi.org/10.1097/CCM.0b013e3182a27732.

    Article  Google Scholar 

  55. Lopez HV, Vivas MF, Ruiz RN, Martinez JR, Navaridas BG, Villa MG, et al. Association between post-procedural hyperoxia and poor functional outcome after mechanical thrombectomy for ischemic stroke: an observational study. Ann Intensive Care. 2019;9(1):59. https://doi.org/10.1186/s13613-019-0533-8.

    Article  CAS  Google Scholar 

  56. Balan IS, Fiskum G, Hazelton J, Cotto-Cumba C, Rosenthal RE. Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke. 2006;37(12):3008–13. https://doi.org/10.1161/01.STR.0000248455.73785.b1.

    Article  Google Scholar 

  57. Steyerberg EW, Wiegers E, Sewalt C, Buki A, Citerio G, De Keyser V, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 2019;18(10):923–34. https://doi.org/10.1016/S1474-4422(19)30232-7.

    Article  Google Scholar 

  58. Coplin WM, Pierson DJ, Cooley KD, Newell DW, Rubenfeld GD. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med. 2000;161(5):1530–6. https://doi.org/10.1164/ajrccm.161.5.9905102.

    Article  CAS  Google Scholar 

  59. Mayer SA, Copeland D, Bernardini GL, Boden-Albala B, Lennihan L, Kossoff S, et al. Cost and outcome of mechanical ventilation for life-threatening stroke. Stroke. 2000;31(10):2346–53. https://doi.org/10.1161/01.str.31.10.2346.

    Article  CAS  Google Scholar 

  60. Karanjia N, Nordquist D, Stevens R, Nyquist P. A clinical description of extubation failure in patients with primary brain injury. Neurocrit Care. 2011;15(1):4–12. https://doi.org/10.1007/s12028-011-9528-5.

    Article  Google Scholar 

  61. Wang S, Zhang L, Huang K, Lin Z, Qiao W, Pan S. Predictors of extubation failure in neurocritical patients identified by a systematic review and meta-analysis. PLoS ONE. 2014;9(12):e112198. https://doi.org/10.1371/journal.pone.0112198.

    Article  CAS  Google Scholar 

  62. Scheinhorn DJ, Chao DC, Stearn-Hassenpflug M. Liberation from prolonged mechanical ventilation. Crit Care Clin. 2002;18(3):569–95. https://doi.org/10.1016/s0749-0704(02)00016-7.

    Article  Google Scholar 

  63. Liu Y, Wei LQ, Li GQ, Lv FY, Wang H, Zhang YH, et al. A decision-tree model for predicting extubation outcome in elderly patients after a successful spontaneous breathing trial. Anesth Analg. 2010;111(5):1211–8. https://doi.org/10.1213/ANE.0b013e3181f4e82e.

    Article  Google Scholar 

  64. Ko R, Ramos L, Chalela JA. Conventional weaning parameters do not predict extubation failure in neurocritical care patients. Neurocrit Care. 2009;10(3):269–73. https://doi.org/10.1007/s12028-008-9181-9.

    Article  Google Scholar 

  65. Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med. 2013;41(6):1543–54. https://doi.org/10.1097/CCM.0b013e31827ca637.

    Article  Google Scholar 

  66. Villwock JA, Villwock MR, Deshaies EM. Tracheostomy timing affects stroke recovery. J Stroke Cerebrovasc Dis. 2014;23(5):1069–72. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.09.008.

    Article  Google Scholar 

  67. Bosel J, Schiller P, Hook Y, Andes M, Neumann JO, Poli S, et al. Stroke-related Early Tracheostomy versus Prolonged Orotracheal Intubation in Neurocritical Care Trial (SETPOINT): a randomized pilot trial. Stroke. 2013;44(1):21–8. https://doi.org/10.1161/STROKEAHA.112.669895.

    Article  Google Scholar 

  68. Schonenberger S, Niesen WD, Fuhrer H, Bauza C, Klose C, Kieser M, et al. Early tracheostomy in ventilated stroke patients: Study protocol of the international multicentre randomized trial SETPOINT2 (Stroke-related Early Tracheostomy vs. Prolonged Orotracheal Intubation in Neurocritical care Trial 2). Int J Stroke. 2016;11(3):368–79. https://doi.org/10.1177/1747493015616638.

    Article  Google Scholar 

  69. Godet T, Chabanne R, Marin J, Kauffmann S, Futier E, Pereira B, et al. Extubation failure in brain-injured patients: risk factors and development of a prediction score in a preliminary prospective cohort study. Anesthesiology. 2017;126(1):104–14. https://doi.org/10.1097/ALN.0000000000001379.

    Article  Google Scholar 

  70. Szeder V, Ortega-Gutierrez S, Ziai W, Torbey MT. The TRACH score: clinical and radiological predictors of tracheostomy in supratentorial spontaneous intracerebral hemorrhage. Neurocrit Care. 2010;13(1):40–6. https://doi.org/10.1007/s12028-010-9346-1.

    Article  Google Scholar 

  71. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. https://doi.org/10.1056/NEJMoa1214103.

    Article  CAS  Google Scholar 

  72. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16. https://doi.org/10.1056/NEJMoa1005372.

    Article  CAS  Google Scholar 

  73. Young NH, Andrews PJ. High-frequency oscillation as a rescue strategy for brain-injured adult patients with acute lung injury and acute respiratory distress syndrome. Neurocrit Care. 2011;15(3):623–33. https://doi.org/10.1007/s12028-011-9550-7.

    Article  Google Scholar 

  74. Roth C, Ferbert A, Deinsberger W, Kleffmann J, Kastner S, Godau J, et al. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care. 2014;21(2):186–91. https://doi.org/10.1007/s12028-014-0004-x.

    Article  Google Scholar 

  75. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21(Suppl 2):S1–26. https://doi.org/10.1007/s12028-014-0041-5.

    Article  Google Scholar 

  76. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  CAS  Google Scholar 

  77. Busl KM, Bleck TP. Neurogenic pulmonary edema. Crit Care Med. 2015;43(8):1710–5. https://doi.org/10.1097/CCM.0000000000001101.

    Article  Google Scholar 

  78. Aljishi M, Jayathissa S. Neurogenic pulmonary oedema secondary to vertebral artery dissection while playing tennis. BMJ Case Rep. 2018;2018 https://doi.org/10.1136/bcr-2017-221753.

  79. Raha A, Wadehra A, Sandhu K, Dasgupta A. Acute subdural hematoma causing neurogenic pulmonary edema following lumbar spine surgery. J Neurosurg Anesthesiol. 2017;29(1):63–4. https://doi.org/10.1097/ANA.0000000000000254.

    Article  Google Scholar 

  80. Kondo R, Sugita Y, Arakawa K, Nakashima S, Umeno Y, Todoroki K, et al. Neurogenic pulmonary edema following Cryptococcal meningoencephalitis associated with HIV infection. Neuropathology. 2015;35(4):343–7. https://doi.org/10.1111/neup.12193.

    Article  CAS  Google Scholar 

  81. Simon RP, Gean-Marton AD, Sander JE. Medullary lesion inducing pulmonary edema: a magnetic resonance imaging study. Ann Neurol. 1991;30(5):727–30. https://doi.org/10.1002/ana.410300515.

    Article  CAS  Google Scholar 

  82. Lee DS, Kobrine A. Neurogenic pulmonary edema associated with ruptured spinal cord arteriovenous malformation. Neurosurgery. 1983;12(6):691–3. https://doi.org/10.1227/00006123-198306000-00019.

    Article  CAS  Google Scholar 

  83. Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand. 2007;51(4):447–55. https://doi.org/10.1111/j.1399-6576.2007.01276.x.

    Article  CAS  Google Scholar 

  84. Sacher DC, Yoo EJ. Recurrent acute neurogenic pulmonary edema after uncontrolled seizures. Case Rep Pulmonol. 2018;2018:3483282. https://doi.org/10.1155/2018/3483282.

    Article  Google Scholar 

  85. Ishiwata Y, Fujitsu K, Sekino T, Fujino H, Kubokura T, Tsubone K, et al. Subdural tension pneumocephalus following surgery for chronic subdural hematoma. J Neurosurg. 1988;68(1):58–61. https://doi.org/10.3171/jns.1988.68.1.0058.

    Article  CAS  Google Scholar 

  86. Siegel JL, Hampton K, Rabinstein AA, McLaughlin D, Diaz-Gomez JL. Oxygen therapy with high-flow nasal cannula as an effective treatment for perioperative pneumocephalus: case illustrations and pathophysiological review. Neurocrit Care. 2018;29(3):366–73. https://doi.org/10.1007/s12028-017-0464-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil R. Dibu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dibu, J.R. (2022). Mechanical Ventilation in Neurocritical Care Patient. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics