Skip to main content

Mechanical Ventilation Strategies for Patients on Extracorporeal Membrane Oxygenation Support

  • Chapter
  • First Online:
Personalized Mechanical Ventilation

Abstract

Venovenous extracorporeal membrane oxygenation (ECMO) is increasingly offered as rescue therapy for patients with severe acute respiratory distress syndrome (ARDS). ECMO provides respiratory gas exchange across a membrane lung to supplement mechanical ventilation through a compromised, noncompliant, native lung. As ECMO itself does not treat the underlying lung injury, the focus of therapy is on supporting native lung recovery. Refining lung-protective mechanical ventilation strategies is critical to reducing ventilator-induced lung injury (VILI) and to achieving improved outcomes on ECMO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  CAS  Google Scholar 

  2. Duan EH, Adhikari NKJ, D’Aragon F, et al. Management of acute respiratory distress syndrome and refractory hypoxemia. A multicenter observational study. Ann Am Thorac Soc. 2017;14(12):1818–26. https://doi.org/10.1513/AnnalsATS.201612-1042OC.

    Article  Google Scholar 

  3. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  Google Scholar 

  4. Qadir N, Bartz RR, Cooter ML, et al. Variation in early management practices in moderate-to-severe ARDS in the United States: the severe ARDS: generating evidence study. Chest. 2021;160(4):1304–15. https://doi.org/10.1016/j.chest.2021.05.047.

    Article  Google Scholar 

  5. Hill JD, O’Brien TG, Murray JJ, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286(12):629–34. https://doi.org/10.1056/NEJM197203232861204.

    Article  CAS  Google Scholar 

  6. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63. https://doi.org/10.1016/S0140-6736(09)61069-2.

    Article  Google Scholar 

  7. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med24. 2018;378(21):1965–75. https://doi.org/10.1056/NEJMoa1800385.

    Article  Google Scholar 

  8. Organization TELS. ELSO registry, International Summary; October, 2021. https://www.elso.org/Registry/InternationalSummaryandReports/InternationalSummary.aspx. Accessed 31 Mar 2022.

  9. Combes A, Brodie D, Chen YS, et al. The ICM research agenda on extracorporeal life support. Intensive Care Med. 2017;43(9):1306–18. https://doi.org/10.1007/s00134-017-4803-3.

    Article  Google Scholar 

  10. Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. https://doi.org/10.1056/NEJM200005043421801.

    Article  Google Scholar 

  11. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73. https://doi.org/10.1001/jama.2010.218.

    Article  CAS  Google Scholar 

  12. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. https://doi.org/10.1056/NEJMoa1214103.

    Article  CAS  Google Scholar 

  13. Papazian L, Schmidt M, Hajage D, et al. Effect of prone positioning on survival in adult patients receiving venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med. 2022;48(3):270–80. https://doi.org/10.1007/s00134-021-06604-x.

    Article  CAS  Google Scholar 

  14. Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008. https://doi.org/10.1056/NEJMoa1901686.

    Article  Google Scholar 

  15. Tonna JE, Abrams D, Brodie D, et al. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): guideline from the extracorporeal life support organization (ELSO). ASAIO J. 2021;67(6):601–10. https://doi.org/10.1097/MAT.0000000000001432.

    Article  CAS  Google Scholar 

  16. Marhong JD, Telesnicki T, Munshi L, Del Sorbo L, Detsky M, Fan E. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey. Ann Am Thorac Soc. 2014;11(6):956–61. https://doi.org/10.1513/AnnalsATS.201403-100BC.

    Article  Google Scholar 

  17. Schmidt M, Stewart C, Bailey M, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: a retrospective international multicenter study. Crit Care Med. 2015;43(3):654–64. https://doi.org/10.1097/CCM.0000000000000753.

    Article  CAS  Google Scholar 

  18. Schmidt M, Pham T, Arcadipane A, et al. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome. an international multicenter prospective cohort. Am J Respir Crit Care Med. 2019;200(8):1002–12. https://doi.org/10.1164/rccm.201806-1094OC.

    Article  CAS  Google Scholar 

  19. Serpa Neto A, Schmidt M, Azevedo LC, et al. Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis: mechanical ventilation during ECMO. Intensive Care Med. 2016;42(11):1672–84. https://doi.org/10.1007/s00134-016-4507-0.

    Article  CAS  Google Scholar 

  20. Araos J, Alegria L, Garcia P, et al. Near-apneic ventilation decreases lung injury and fibroproliferation in an acute respiratory distress syndrome model with extracorporeal membrane oxygenation. Am J Respir Crit Care Med. 2019;199(5):603–12. https://doi.org/10.1164/rccm.201805-0869OC.

    Article  CAS  Google Scholar 

  21. Cavayas YA, Munshi L, Del Sorbo L, Fan E. The early change in Pa. Am J Respir Crit Care Med. 2020;201(12):1525–35. https://doi.org/10.1164/rccm.202001-0023OC.

    Article  CAS  Google Scholar 

  22. Combes A, Fanelli V, Pham T, Ranieri VM, investigators ESoICMTGatSoU-PlvwECRfN-OmtsAS. Feasibility and safety of extracorporeal CO. Intensive Care Med. 2019;45(5):592–600. https://doi.org/10.1007/s00134-019-05567-4.

    Article  Google Scholar 

  23. McNamee JJ, Gillies MA, Barrett NA, et al. Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure: the rest randomized clinical trial. JAMA. 2021;326(11):1013–23. https://doi.org/10.1001/jama.2021.13374.

    Article  CAS  Google Scholar 

  24. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55. https://doi.org/10.1056/NEJMsa1410639.

    Article  CAS  Google Scholar 

  25. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75. https://doi.org/10.1007/s00134-016-4505-2.

    Article  CAS  Google Scholar 

  26. Costa ELV, Slutsky AS, Brochard LJ, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2021;204(3):303–11. https://doi.org/10.1164/rccm.202009-3467OC.

    Article  Google Scholar 

  27. Beitler JR, Sarge T, Banner-Goodspeed VM, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321(9):846–57. https://doi.org/10.1001/jama.2019.0555.

    Article  Google Scholar 

  28. Franchineau G, Bréchot N, Lebreton G, et al. Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(4):447–57. https://doi.org/10.1164/rccm.201605-1055OC.

    Article  CAS  Google Scholar 

  29. Gurnani PK, Michalak LA, Tabachnick D, Kotwas M, Tatooles AJ. Outcomes of extubated COVID and non-COVID patients receiving awake venovenous extracorporeal membrane oxygenation. ASAIO J. 2022;68(4):478–85. https://doi.org/10.1097/MAT.0000000000001632.

    Article  CAS  Google Scholar 

  30. Mustafa AK, Joshi DJ, Alexander PJ, et al. Comparative propensity matched outcomes in severe COVID-19 respiratory failure-extracorporeal membrane oxygenation or maximum ventilation alone. Ann Surg. 2021;274(5):e388–94. https://doi.org/10.1097/SLA.0000000000005187.

    Article  Google Scholar 

  31. Mang S, Reyher C, Mutlak H, et al. Awake extracorporeal membrane oxygenation for COVID-19-induced acute respiratory distress syndrome. Am J Respir Crit Care Med. 2022;205(7):847–51. https://doi.org/10.1164/rccm.202105-1189LE.

    Article  CAS  Google Scholar 

  32. Bartlett RH. Physiology of gas exchange during ECMO for respiratory failure. J Intensive Care Med. 2017;32(4):243–8. https://doi.org/10.1177/0885066616641383.

    Article  Google Scholar 

  33. Al-Fares AA, Ferguson ND, Ma J, et al. Achieving safe liberation during weaning from VV-ECMO in patients with severe ARDS: the role of tidal volume and inspiratory effort. Chest. 2021;160(5):1704–13. https://doi.org/10.1016/j.chest.2021.05.068.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline K. Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nickols, A.K., Park, P.K. (2022). Mechanical Ventilation Strategies for Patients on Extracorporeal Membrane Oxygenation Support. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics