Skip to main content

Mechanical Ventilation in COVID

  • Chapter
  • First Online:
Personalized Mechanical Ventilation

Abstract

From the start of the pandemic, amid the frequency of cases with COVID-19 associated respiratory failure, mechanical ventilation has been the object of controversy. Reports associating its use with higher mortality, likely reflecting the severity of an unknown illness devastating the entire world, as well as the turmoil caused by the lack of sufficient equipment to supply the increasing demands in our hospitals, both were points of attention for media and public in general. However, from the clinical perspective, the need to apply different methods or to deviate from stablished guidelines to be able to adequately support these patients, was soon noticed. Multiple publications were guiding clinicians in the obscured territory of the unknown disease and to its variable impact on the respiratory system. This chapter aims to summarize the knowledge acquired throughout the pandemic, describing some of the elements of COVID-19 respiratory failure as well as its management with mechanical ventilation. The chapter recovers some of the increasing information appearing almost daily in the literature. We recognize that given the changing nature of the disease and the progressive knowledge of the same, some of the concepts covered in this chapter might be subject of some review or modification at the moment of the publication. We, the authors, have attempted to summarize the existing evidence and to maintain a basic conceptual approach to the management of COVID-19 respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahon DE, Peters GA, Ivers LC, Freeman EE. Global resource shortages during COVID-19: bad news for low-income countries. PLoS Negl Trop Dis. 2020;14:e0008412. https://doi.org/10.1371/journal.pntd.0008412.

    Article  CAS  Google Scholar 

  2. Goodman S, Chokshi N. How the world ran out of everything. NY Times. 2021. Updated 22 Oct 2021.

    Google Scholar 

  3. Schultz MJ, Serpa Neto A, Paulus F. Battling COVID-19 related mortality: from a fight for ventilators to a cry for oxygen. Lancet. 2021;9(9):939–41.

    CAS  Google Scholar 

  4. Centers for Disease Control and Prevention. National Center for Health Statistics. Accessed online 15 Dec 2021.

    Google Scholar 

  5. Auld S, Caridi-Scheibe M, Blum JM, the Emory COVID-19 Quality and Clinical Research Collaborative. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med. 2020;48(9):e799–804. https://doi.org/10.1097/CCm.0000000000004457.

    Article  CAS  Google Scholar 

  6. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9. https://doi.org/10.1001/jama.2020.6775.

    Article  CAS  Google Scholar 

  7. Nicholson JN, Wooster L, Sigurslid HH, et al. Estimating risk of mechanical ventilation and in-hospital mortality among adult COVID-19 patients admitted to Mass General Brigham: the VICE and DICE scores. EClinicalMedicine. 2021;33:100765. https://doi.org/10.1016/j.eclinm.2021.100765.

    Article  Google Scholar 

  8. Ducharme J. Why ventilators might not be working as well for COVID-19 patients as doctors hoped. Time magazine. 2020. Accessed online.

    Google Scholar 

  9. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81; (published online Feb 21). https://doi.org/10.1016/S2213-2600(20)30079-5.

    Article  CAS  Google Scholar 

  10. Nauka P, Chen J, Shiloh A, Eisen L, Fein D. Practice, outcomes, and complications of emergent endotracheal intubation by critical care practitioners during the COVID-19 pandemic. Chest. 2021;160:2112. https://doi.org/10.1016/j.chest.2021.06.008.

    Article  CAS  Google Scholar 

  11. Orser BA. Recommendations for endotracheal intubation of COVID-19 patients. Anesth Analg. 2020;130(5):1109–10. https://doi.org/10.1213/ANE.0000000000004803.

    Article  CAS  Google Scholar 

  12. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7:e35797. https://doi.org/10.1371/journal.pone.0035797.

    Article  CAS  Google Scholar 

  13. Tobin MJ, Laghi F, Jubran A. Caution about early intubation and mechanical ventilation in COVID-19. Ann Intensive Care. 2020;10:78. https://doi.org/10.1186/s13613-020-00692-6.

    Article  CAS  Google Scholar 

  14. Intensive Care Society. 2020. Use of continuous positive airway pressure (CPAP) for COVID-19 positive patients. www.ics.ac.uk

  15. Pandya A, Kaur N, Sacher D, O’Corragain O, Salerno D, Desai P, et al. Ventilatory mechanics in early vs late intubation in a cohort of coronavirus disease 2019 patients with ARDS. Chest. 2021;159(2):653–6. https://doi.org/10.1016/j.chest.2020.08.2084.

    Article  CAS  Google Scholar 

  16. Papoutsi E, Giannakoulis V, Xourgia E, Routsi C, Kotanidou A, Siempos I. Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: a systematic review and meta-analysis of non-randomized cohort studies. Crit Care. 2021;25(1):121. https://doi.org/10.1186/s13054-021-03540-6.

    Article  Google Scholar 

  17. Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self- inflicted lung injury: implications for acute hypoxaemic respiratory failure and ARDS patients on non-invasive support. Minerva Anaestesiol. 2019;85:1014–23. https://doi.org/10.23736/s0375-9393.19.13418-9.

    Article  Google Scholar 

  18. Gattinoni L, Marini JJ, Camporota L. The respiratory drive: an overlooked tile of COVID-19 pathophysiology. Am J Respir Crit Care Med. 2020;202(8):1079–80.

    Article  CAS  Google Scholar 

  19. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020;24(1):154. https://doi.org/10.1186/s13054-020-02880-z.

    Article  Google Scholar 

  20. Weaver L, Das A, Saffaran S, et al. High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study. Ann Intensive Care. 2021;11:109. https://doi.org/10.1186/s13613-021-00904-7.

    Article  CAS  Google Scholar 

  21. Panwar R, Madotto F, Laffey J, van Haren F. Compliance phenotypes in early acute respiratory distress syndrome before the COVID-19 pandemic. Am J Respir Crit Care Med. 2020;202(9):1244–52. https://doi.org/10.1164/rccm.202005-2046oc.

    Article  CAS  Google Scholar 

  22. Gattinoni L, Marini J. Isn’t it time to abandon ARDS? The COVID-19 lesson. Crit Care. 2021;25(1):326. https://doi.org/10.1186/s13054-021-03748-6.

    Article  CAS  Google Scholar 

  23. Protti A, Santini A, Pennati F, Chiurazzi C, Cressoni M, Ferrari M, et al. Lung response to a higher positive end-expiratory pressure in mechanically ventilated patients with COVID-19. Chest. 2021;161:979. https://doi.org/10.1016/j.chest.2021.10.012.

    Article  CAS  Google Scholar 

  24. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099–102. https://doi.org/10.1007/s00134-020-06033-2.

    Article  CAS  Google Scholar 

  25. Maslove D, Sibley S, Boyd J, Goligher E, Munshi L, Bogoch I, Rochwerg B. Complications of critical COVID-19: diagnostic and therapeutic considerations for the mechanically ventilated patient. Chest. 2022;161(4):989–98. https://doi.org/10.1016/j.chest.2021.10.011.

    Article  CAS  Google Scholar 

  26. Alhazzani W, Evans L, Alshamsi F, Møller M, Ostermann M, Prescott H, et al. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. Crit Care Med. 2021;49(3):e219–34. https://doi.org/10.1097/ccm.0000000000004899.

    Article  CAS  Google Scholar 

  27. Boscolo A, Sella N, Lorenzoni G, et al. Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS. Crit Care. 2021;25:263. https://doi.org/10.1186/s13054-021-03667-6.

    Article  Google Scholar 

  28. Courcelle R, Gaudry S, Serck N, et al. Neuromuscular blocking agents (NMBA) for COVID-19 acute respiratory distress syndrome: a multicenter observational study. Crit Care. 2020;24:446.

    Article  Google Scholar 

  29. Guérin C, Reignier J, Richard J, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. https://doi.org/10.1056/nejmoa1214103.

    Article  Google Scholar 

  30. Langer T, Brioni M, Guzzardella A, Carlesso E, Cabrini L, Castelli G, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Crit Care. 2021;25(1):128. https://doi.org/10.1186/s13054-021-03552-2.

    Article  Google Scholar 

  31. Wells C, Zhang Z, Huelskamp S, Hughes E, Aguila D, Sevillano M, Garrett L, Acquah S, Chan C, Kohli-Seth R. Prone team: a large-scale prone position initiative during COVID-19 pandemic. J Nurs Adm. 2021;51(4):E13–7. https://doi.org/10.1097/NNA.0000000000001003. PMID: 33734184.

    Article  Google Scholar 

  32. Sarma A, Calfee C. Prone positioning in awake, nonintubated patients with COVID-19. JAMA Intern Med. 2020;180(11):1539. https://doi.org/10.1001/jamainternmed.2020.3027.

    Article  Google Scholar 

  33. Rosén J, von Oelreich E, Fors D, et al. Awake prone positioning in patients with hypoxemic respiratory failure due to COVID-19: the PROFLO multicenter randomized clinical trial. Crit Care. 2021;25:209. https://doi.org/10.1186/s13054-021-03602-9.

    Article  Google Scholar 

  34. Sztajnbok J, Maselli-Schoueri JH, Cunha de Resende Brasil LM, Farias de Sousa L, Cordeiro CM, Sansão Borges LM, Malaque CMSA. Prone positioning to improve oxygenation and relieve respiratory symptoms in awake, spontaneously breathing non-intubated patients with COVID-19 pneumonia. Respir Med Case Rep. 2020;30:101096. https://doi.org/10.1016/j.rmcr.2020.101096. Epub 2020 May 19. PMID: 32455107; PMCID: PMC7236748.

    Article  Google Scholar 

  35. Kaur R, Vines D, Mirza S, Elshafei A, Jackson J, Harnois L, et al. Early versus late awake prone positioning in non-intubated patients with COVID-19. Crit Care. 2021;25(1):340. https://doi.org/10.1186/s13054-021-03761-9.

    Article  Google Scholar 

  36. Santos RS, Silva PL, Pelosi P, Rocco PR. Recruitment maneuvers in acute respiratory distress syndrome: the safe way is the best way. World J Crit Care Med. 2015;4(4):278–86. Published 2015 Nov 4. https://doi.org/10.5492/wjccm.v4.i4.278.

    Article  Google Scholar 

  37. Cammarota G, Simonte R, De Robertis E. PEEP-induced alveolar recruitment in patients with COVID-19 pneumonia: take the right time! Crit Care. 2021;25:163. https://doi.org/10.1186/s13054-021-03573-x.

    Article  Google Scholar 

  38. COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of Health. https://www.covid19treatmentguidelines.nih.gov/.

  39. Barbaro R, MacLaren G, Boonstra P, Combes A, Agerstrand C, Annich G, et al. Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international extracorporeal life support organization registry. Lancet. 2021;398(10307):1230–8. https://doi.org/10.1016/s0140-6736(21)01960-7.

    Article  CAS  Google Scholar 

  40. Devlin J, Skrobik Y, Gélinas C, Needham D, Slooter A, Pandharipande P, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–73. https://doi.org/10.1097/ccm.0000000000003299.

    Article  Google Scholar 

  41. Papazian L, Forel J, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16. https://doi.org/10.1056/nejmoa1005372.

    Article  CAS  Google Scholar 

  42. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008. https://doi.org/10.1056/nejmoa1901686.

  43. Pun B, Badenes R, Heras La Calle G, Orun O, Chen W, Raman R, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez-Fernandez, J., Puig, E., Purewal, J.K., Perez, P. (2022). Mechanical Ventilation in COVID. In: Hidalgo, J., Hyzy, R.C., Mohamed Reda Taha, A., Tolba, Y.Y.A. (eds) Personalized Mechanical Ventilation . Springer, Cham. https://doi.org/10.1007/978-3-031-14138-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14138-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14137-9

  • Online ISBN: 978-3-031-14138-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics