Skip to main content

Tuberculosis: Current Treatment Options and Future Scope

  • Chapter
  • First Online:
Tubercular Drug Delivery Systems

Abstract

Tuberculosis (TB) is a communicable disease that mainly affects the lungs. TB is the major cause of ill health and the leading cause of death from a single infectious agent. The emergence of multidrug-resistant tuberculosis (MDR-TB) has led to the failure of first-line antituberculosis therapy. An appropriate combination of anti-TB drugs or substitution with second-line agents are required for improving the treatment success rates of MDR and extensively drug-resistant (XDR) TB. Only a few drugs such as bedaquiline, delamanid, and pretomanid have been approved for treating MDR-TB since the last four decades. There is a dire need for the development of more effective TB drugs, adjunct therapies, and vaccines in order to improve the treatment outcomes. In this chapter, we made efforts to provide an overview of the current treatment options and challenges of TB therapy. In addition, we discussed the latest treatment strategies, new chemical entities, herbal drugs, new drug regimens, and vaccines being developed to treat both drug-susceptible and drug-resistant TB disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenine triphosphate

BCG:

Bacillus Calmette–Guérin

CNS:

Centeral nervous system

CSF:

Cerebro spinal fluid

DDS:

Drug delivery system

DNA:

Deoxy ribonucleic acid

DOTS:

Directly observed therapy shourtcourse

DPI:

Dry powder injection

GI:

Gastro intestinal

HIV:

Human immunodeficiency virus

IG:

Immunoglobulines

IL-12:

Interleukin 12

INFγ:

Interferon gamma

LBG:

Locust bean gum

LTBI:

Latent tuberculosis infection

MDR-TB:

Multidrug-resistant tuberculosis

PDE:

Phosphodiesterase

pMDI:

Pressurized meter dose inhaller

PPARγ:

Paroxisome proliferator activated response

RNA:

Ribonucleic acid

TB:

Tuberculosis

TBM:

Tubercular meningitis

TNFα:

Tumour necrosis factor alpha

WHO:

Worlds Health Organization

XDR-TB:

Extensive drug-resistant tuberculosis

References

  1. Global Tuberculosis Report 2021. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021. Accessed 27 Oct 2021.

  2. Zumla A, Raviglione M, Hafner R, et al. Tuberculosis. New Eng J Med. 2013;368:745–55.

    CAS  PubMed  Google Scholar 

  3. Treatment for TB disease. https://www.cdc.gov/tb/topic/treatment/tbdisease.htm. Accessed 25 Dec 2021.

  4. PMDT guideline: Ministry of Health and Family Welfare. https://tbcindia.gov.in/showfile.php?lid=3155. Accessed 14 Jan 2022.

  5. Thee S, Garcia-Prats AJ, Donald PR, et al. Fluoroquinolones for the treatment of tuberculosis in children. Tuberculosis. 2015;95:229–45.

    CAS  PubMed  Google Scholar 

  6. Jadhavar PS, Vaja MD, Dhameliya TM, Chakraborti AK. Oxazolidinones as anti-tubercular agents: discovery, development and future perspectives. Curr Med Chem. 2015;22:4379–97.

    CAS  PubMed  Google Scholar 

  7. Bocchino M, Matarese A, Sanduzzi A. Current treatment options for latent tuberculosis infection. J Rheumatol. 2014;41:71–7.

    Google Scholar 

  8. Ginsberg AM. Tuberculosis drug development: Progress, challenges, and the road ahead. Tuberculosis. 2010;90:162–7.

    CAS  PubMed  Google Scholar 

  9. Churchyard GJ, Kaplan G, Fallows D, et al. Advances in immunotherapy for tuberculosis treatment. Clin Chest Med. 2009;30:769–82.

    PubMed  Google Scholar 

  10. Dawson R, Condos R, Tse D, et al. Immunomodulation with recombinant interferon-γ1b in pulmonary tuberculosis. PLoS One. 2009;4:e6984.

    PubMed  PubMed Central  Google Scholar 

  11. Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem. 2007;15:2479–513.

    CAS  PubMed  Google Scholar 

  12. O’Connor G, Gleeson LE, Fagan-Murphy A, et al. Sharpening nature’s tools for efficient tuberculosis control: a review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev. 2016;102:33–54.

    PubMed  Google Scholar 

  13. Haydel SE. Extensively drug-resistant tuberculosis: a sign of the times and an impetus for antimicrobial discovery. Pharmaceuticals. 2010;3:2268–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. SIRTUROâ„¢ (bedaquiline). http://www.sirturo.com/. Accessed 15 Apr 2015.

  15. Rakesh BDF, Scherman MS, et al. Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids. Bioorg Med Chem Lett. 2016;26:388–91.

    CAS  PubMed  Google Scholar 

  16. (2015) Otsuka pharmaceutical media release. Otsuka wins European marketing authorization for Deltyba(TM) (delamanid). http://www.otsuka.co.jp/en/company/release/2014/0430_01.html. Accessed 18 May 2016.

  17. Haufroid M, Wouters J. Targeting the serine pathway: a promising approach against tuberculosis? Pharmaceuticals. 2019;12:66.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan JGY, Bai X, Traini D. An update on the use of rifapentine for tuberculosis therapy. Expert Opin Drug Deliv. 2014;11:421–31.

    CAS  PubMed  Google Scholar 

  19. Lee BY, Clemens DL, Silva A, et al. Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time. Nat Commun. 2017;8:14183.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur M, Garg T, Rath G, Goyal AK. Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Crit Rev Ther Drug Carr Syst. 2014;31:49–88.

    CAS  Google Scholar 

  21. du Toit LC, Pillay V, Danckwerts MP. Tuberculosis chemotherapy: current drug delivery approaches. Respir Res. 2006;7:118.

    PubMed  PubMed Central  Google Scholar 

  22. Lawlor C, Kelly C, O’Leary S, et al. Cellular targeting and trafficking of drug delivery systems for the prevention and treatment of MTb. Tuberculosis. 2011;91:93–7.

    CAS  PubMed  Google Scholar 

  23. Kaur R, Kaur R, Singh C, et al. Inhalational drug delivery in pulmonary aspergillosis. Crit Rev Ther Drug Carrier Syst. 2019;36:183–217.

    PubMed  Google Scholar 

  24. Leite JM da S, Patriota YBG, Roca MF de La, Soares-Sobrinho JL. New perspectives in drug delivery systems for the treatment of tuberculosis. Curr Med Chem. 2021;28 https://doi.org/10.2174/0929867328666210629154908.

  25. Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112:108601.

    CAS  PubMed  Google Scholar 

  26. Alves AD, Cavaco JS, Guerreiro F, et al. Inhalable antitubercular therapy mediated by locust bean gum microparticles. Molecules. 2016;21:702.

    PubMed  PubMed Central  Google Scholar 

  27. Niu N-K, Yin J-J, Yang Y-X, et al. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study. Drug Des Devel Ther. 2015;9:4441–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hadrich G, Boschero RA, Appel AS, et al. Tuberculosis treatment facilitated by lipid nanocarriers: can inhalation improve the regimen? Assay Drug Dev Technol. 2020;18:298–307.

    PubMed  Google Scholar 

  29. Minakshi P, Ghosh M, Brar B, et al. Nano-antimicrobials: a new paradigm for combating Mycobacterial resistance. Curr Pharm Des. 2019;25:1554–79.

    CAS  PubMed  Google Scholar 

  30. Alzahabi KH, Usmani O, Georgiou TK, et al. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci. 2021;4:581–600.

    Google Scholar 

  31. Wiens T, Redelmeier T, Av-Gay Y. Development of a liposome formulation of ethambutol. Antimicrob Agents Chemother. 2004;48:1887–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deol P, Khuller GK. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim Biophys Acta – Gen Subj. 1997;1334:161–72.

    CAS  Google Scholar 

  33. Gordillo-Galeano A, Ospina-Giraldo LF, Mora-Huertas CE. Lipid nanoparticles with improved biopharmaceutical attributes for tuberculosis treatment. Int J Pharm. 2021;596:120321.

    CAS  PubMed  Google Scholar 

  34. Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res. 2021;11:1218–35.

    CAS  PubMed  Google Scholar 

  35. Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine. 2018;13:2507–25.

    CAS  PubMed  Google Scholar 

  36. Rajput A, Mandlik S, Pokharkar V. Nanocarrier-based approaches for the efficient delivery of anti-tubercular drugs and vaccines for management of tuberculosis. Front Pharmacol. 2021;12:749945.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu Y, Stumpfe D, Bajorath J. Recent advances in scaffold hopping. J Med Chem. 2017;60:1238–46.

    CAS  PubMed  Google Scholar 

  38. Palomino J, Ramos D, da Silva P. New anti-tuberculosis drugs: strategies, sources and new molecules. Curr Med Chem. 2009;16:1898–904.

    CAS  PubMed  Google Scholar 

  39. Baer CE, Rubin EJ, Sassetti CM. New insights into TB physiology suggest untapped therapeutic opportunities. Immunol Rev. 2015;264:327–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rivers EC, Mancera RL. New anti-tuberculosis drugs in clinical trials with novel mechanisms of action. Drug Discov Today. 2008;13:1090–8.

    CAS  PubMed  Google Scholar 

  41. Nayyar A, Jain R. Recent advances in new structural classes of anti-tuberculosis agents. Curr Med Chem. 2005;12:1873–86.

    CAS  PubMed  Google Scholar 

  42. Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev. 2018;38:684–740.

    PubMed  Google Scholar 

  43. Sharma A, De Rosa M, Singla N, et al. Tuberculosis: an overview of the immunogenic response, disease progression, and medicinal chemistry efforts in the last decade toward the development of potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. J Med Chem. 2021;64:4359–95.

    CAS  PubMed  Google Scholar 

  44. Singh P, Jaiyeola B, Kerru N, et al. A review of recent advancements in anti-tubercular molecular hybrids. Curr Med Chem. 2017;24:4180–212.

    CAS  PubMed  Google Scholar 

  45. Angula KT, Legoabe LJ, Beteck RM. Chemical classes presenting novel antituberculosis agents currently in different phases of drug development: a 2010–2020 review. Pharmaceuticals. 2021;14:461.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dhameliya TM, Patel KI, Tiwari R, et al. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem. 2021;107:104538.

    CAS  PubMed  Google Scholar 

  47. Jadhavar PS, Patel KI, Dhameliya TM, et al. Benzimidazoquinazolines as new potent anti-TB chemotypes: design, synthesis, and biological evaluation. Bioorg Chem. 2020;99:103774.

    CAS  PubMed  Google Scholar 

  48. Dhameliya TM, Chudasma SJ, Patel TM, Dave BP. A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers. 2022; https://doi.org/10.1007/s11030-021-10375-4.

  49. Dhameliya TM, Bhakhar KA, Gajjar ND, et al. Recent advancements and developments in search of anti-tuberculosis agents: a quinquennial update and future directions. J Mol Struct. 2022;1248:131473.

    CAS  Google Scholar 

  50. Bhakhar KA, Sureja DK, Dhameliya TM. Synthetic account of indoles in search of potential anti-mycobacterial agents: a review and future insights. J Mol Struct. 2022;1248:131522.

    CAS  Google Scholar 

  51. Dupont C, Chen Y, Xu Z, et al. A piperidinol-containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3. J Biol Chem. 2019;294:17512–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Krishna VS, Zheng S, Rekha EM, et al. Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. J Comput Aided Mol Des. 2019;33:357–66.

    CAS  PubMed  Google Scholar 

  53. Brown AK, Aljohani AKB, Gill JH, et al. Identification of novel benzoxa-[2,1,3]-diazole substituted amino acid hydrazides as potential anti-tubercular agents. Molecules. 2019;24:811.

    PubMed  PubMed Central  Google Scholar 

  54. Sharma D, Yadav J. An overview of phytotherapeutic approaches for the treatment of tuberculosis. Mini-Reviews Med Chem. 2016;17:167–83.

    Google Scholar 

  55. Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, et al. Medicinal plants used in the treatment of tuberculosis – ethnobotanical and ethnopharmacological approaches. Biotechnol Adv. 2020;44:107629.

    CAS  PubMed  Google Scholar 

  56. Abdella G, Mirutse G, Gobena A, Adane W. In vitro anti-mycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis and Mycobacterium bovis strains. BMC Complement Altern Med. 2013;13:291.

    Google Scholar 

  57. Tran AT, Watson EE, Pujari V, et al. Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid i biosynthesis. Nat Commun. 2017;8:14414.

    PubMed  PubMed Central  Google Scholar 

  58. Tuyiringire N, Deyno S, Weisheit A, et al. Three promising antimycobacterial medicinal plants reviewed as potential sources of drug hit candidates against multidrug-resistant tuberculosis. Tuberculosis. 2020;124:101987.

    CAS  PubMed  Google Scholar 

  59. Clinical Portfolio | TB Alliance. https://www.tballiance.org/portfolio. Accessed 26 Oct 2021.

  60. Workcing group for new TB drugs. https://www.newtbdrugs.org/. Accessed 26 Oct 2021.

  61. Panjasawatwong N, Wattanakul T, Hoglund RM, et al. Population pharmacokinetic properties of antituberculosis drugs in Vietnamese children with tuberculous meningitis. Antimicrob Agents Chemother. 2021;65:e00487–20.

    CAS  Google Scholar 

  62. De Steenwinkel JEM, Aarnoutse RE, De Knegt GJ, et al. Optimization of the rifampin dosage to improve the therapeutic efficacy in tuberculosis treatment using a murine model. Am J Respir Crit Care Med. 2013;187:1127–34.

    PubMed  Google Scholar 

  63. Abbate E, Vescovo M, Natiello M, et al. Successful alternative treatment of extensively drug-resistant tuberculosis in Argentina with a combination of linezolid, moxifloxacin and thioridazine. J Antimicrob Chemother. 2012;67:473–7.

    CAS  PubMed  Google Scholar 

  64. Pitt JM, Blankley S, McShane H, O’Garra A. Vaccination against tuberculosis: how can we better BCG? Microb Pathog. 2013;58:2–16.

    PubMed  Google Scholar 

  65. Méndez-Samperio P. Global efforts in the development of vaccines for tuberculosis: requirements for improved vaccines against Mycobacterium tuberculosis. Scand J Immunol. 2016;84:204–10.

    PubMed  Google Scholar 

  66. Orme IM. Preclinical testing of new vaccines for tuberculosis: a comprehensive review. Vaccine. 2006;24:2–19.

    PubMed  Google Scholar 

  67. Kaufmann SH, Hussey G, Lambert PH. New vaccines for tuberculosis. Lancet. 2010;375:2110–9.

    PubMed  Google Scholar 

  68. Sander C, McShane H. Translational mini-review series on vaccines: development and evaluation of improved vaccines against tuberculosis. Clin Exp Immunol. 2007;147:401–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Riordan K, Sharlin DS, Gross J, et al. Photoinactivation of mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob Agents Chemother. 2006;50:1828–34.

    PubMed  PubMed Central  Google Scholar 

  70. Han Y, Zhao Q, Yu D, Liu Z. Treatment of chest wall tuberculosis with transdermal ultrasound-mediated drug delivery. Exp Ther Med. 2015;9:1433–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tejas M. Dhameliya or Sai H. S. Boddu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, Y.B. et al. (2023). Tuberculosis: Current Treatment Options and Future Scope. In: Shegokar, R., Pathak, Y. (eds) Tubercular Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-14100-3_4

Download citation

Publish with us

Policies and ethics