Skip to main content

Tuberculosis and Drug Delivery System: Clinical Trials in TB

  • Chapter
  • First Online:
Tubercular Drug Delivery Systems

Abstract

Tuberculosis (TB) is a communicable disease caused by the bacterium Mycobacterium tuberculosis which is the second most lethal infectious disease after AIDS. The global problem of multidrug-resistant tuberculosis is nearing epidemic proportions, and it is a leading killer of young adults worldwide. It is endemic in the majority of developing countries and has resurfaced in both developed and emerging countries with high rates of HIV infection. This chapter reviews the clinical trials and drug delivery approaches for tuberculosis. A number of innovative implant, microparticulate, and other carrier-based drug delivery systems containing the main anti-tuberculosis medicines have been developed with the goal of improving patient outcomes by either targeting the location of tuberculosis infection or reducing dose frequency. To fully realize the promise of drug development, it will take creativity, perseverance, collaboration, and resources. A delicate balance must be struck between preserving medications from developing resistance and ensuring that regimens are low cost, readily available, and widely accepted by healthcare systems and clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. In: Lancet. Elsevier; 2003. p. 887–99.

    Google Scholar 

  2. Zumla A, Chakaya J, Centis R, D’Ambrosio L, Mwaba P, Bates M, et al. Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respiratory Med Elsevier. 2015;3:220–34.

    Google Scholar 

  3. Chaisson RE, Schecter GF, Theuer CP, Rutherford GW, Echenberg DF, Hopewell PC. Tuberculosis in patients with the acquired immunodeficiency syndrome. Clinical features, response to therapy, and survival. Am Rev Respir Dis. 1987;136(3):570–4.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson JL, Hadad DJ, Boom WH, Daley CL, Peloquin CA, Eisenach KD, et al. Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2006;10(6):605–12.

    CAS  PubMed  Google Scholar 

  5. Orenstein EW, Basu S, Shah NS, Andrews JR, Friedland GH, Moll AP, et al. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(3):153–61.

    Article  PubMed  Google Scholar 

  6. Ehlers LP, Bianchi MV, Argenta FF, Lopes BC, Taunde PA, Wagner PGC, et al. Mycobacterium tuberculosis var. tuberculosis infection in two captive black capuchins (Sapajus nigritus) in Southern Brazil. Braz J Microbiol. 2020;51(4):2169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruge CC, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respiratory Med Elsevier. 2013;1:402–13.

    Google Scholar 

  8. Zeng XM, Martin GP, Marriott C. The controlled delivery of drugs to the lung. Int J Pharm. 1995;124:149–64.

    Google Scholar 

  9. Kellaway IW, Farr SJ. Liposomes as drug delivery systems to the lung. Adv Drug Deliv Rev. 1990;5:149–61.

    Google Scholar 

  10. Couvreur P, Fattal E, Andremont A. Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Off J Am Assoc Pharm Sci Pharm Res. 1991;8:1079–86.

    Google Scholar 

  11. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19(6):875–80.

    Article  CAS  PubMed  Google Scholar 

  12. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75(5):433–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hoet PHM, Brüske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnol BioMed Central. 2004;2:12.

    Google Scholar 

  14. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev Elsevier. 1995;16:215–33.

    Google Scholar 

  15. Lasic DD. On the thermodynamic stability of liposomes. J Colloid Interf Sci. 1990;140:302–4.

    Google Scholar 

  16. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.

    Article  CAS  Google Scholar 

  17. Zeng XM, Martin GP, Marriott C. The controlled delivery of drugs to the lung. Int J Pharm. 1995;124(2):149–64.

    Article  CAS  Google Scholar 

  18. Illum L, Davis SS, Müller RH, Mak E, West P. The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymer – poloxamine 908. Life Sci. 1987;40(4):367–74.

    Article  CAS  PubMed  Google Scholar 

  19. Falzon D, Jaramillo E, Schünemann HJ, Arentz M, Bauer M, Bayona J, et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur Respir J. 2011;38(3):516–28.

    Article  CAS  PubMed  Google Scholar 

  20. Dorman SE, Johnson JL, Goldberg S, Muzanye G, Padayatchi N, Bozeman L, et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med. 2009;180(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad Z, Tyagi S, Minkowski A, Peloquin CA, Grosset JH, Nuermberger EL. Contribution of moxifloxacin or levofloxacin in second-line regimens with or without continuation of pyrazinamide in murine tuberculosis. Am J Respir Crit Care Med. 2013;188(1):97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Migliori GB, Langendam MW, D’Ambrosio L, Centis R, Blasi F, Huitric E, et al. Protecting the tuberculosis drug pipeline: stating the case for the rational use of fluoroquinolones. Eur Respiratory J Eur Respiratory Soc. 2012;40:814–22.

    Google Scholar 

  23. Benator D, Bhattacharya M, Bozeman L, Burman W, Catanzaro A, Chaisson R, et al. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet. 2002;360(9332):528–34.

    Article  PubMed  Google Scholar 

  24. Dorman SE, Goldberg S, Stout JE, Muzanyi G, Johnson JL, Weiner M, et al. Substitution of Rifapentine for Rifampin during intensive phase treatment of pulmonary tuberculosis: study 29 of the tuberculosis trials consortium. J Infect Dis. 2012;206(7):1030–40.

    Article  CAS  Google Scholar 

  25. Mitchison DA. Pharmacokinetic/pharmacodynamic parameters and the choice of high-dosage rifamycins. Int J Tuberc Lung Dis. 2012;16(9):1186–9.

    Article  CAS  Google Scholar 

  26. Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E, et al. Three months of Rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365(23):2155–66.

    Article  CAS  PubMed  Google Scholar 

  27. Wallis RS, Jakubiec W, Kumar V, Bedarida G, Silvia A, Paige D, et al. Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis. Antimicrob Agents Chemother. 2011;55(2):567–74.

    Article  CAS  PubMed  Google Scholar 

  28. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, et al. The Diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med. 2009;360(23):2397–405.

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):2131–44.

    Article  CAS  Google Scholar 

  30. Dawson R, Diacon A. PA-824, moxifloxacin and pyrazinamide combination therapy for tuberculosis. Expert Opin Investig Drugs. 2013;22(7):927–32.

    Article  CAS  PubMed  Google Scholar 

  31. Dey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2013;68(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  32. Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182(5):684–92.

    Article  PubMed  Google Scholar 

  33. Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE, Blanchard JS. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science (80-). 2009;323(5918):1215–8.

    Article  CAS  Google Scholar 

  34. Sacksteder KA, Protopopova M, Barry CE, Andries K, Nacy CA. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol NIH Public Access. 2012;7:823–37.

    Google Scholar 

  35. Pasca MR, Degiacomi G, Lopes Ribeiro ALDJ, Zara F, De Mori P, Heym B, et al. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob Agents Chemother. 2010;54(4):1616–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lechartier B, Hartkoorn RC, Cole ST. In vitro combination studies of benzothiazinone lead compound BTZ043 against mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56(11):5790–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson JL, Hadad DJ, Dietze R, Maciel ELN, Sewali B, Gitta P, et al. Shortening treatment in adults with noncavitary tuberculosis and 2-month culture conversion. Am J Respir Crit Care Med. 2009;180(6):558–63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Merle CSC, Sismanidis C, Sow OB, Gninafon M, Horton J, Lapujade O, et al. A pivotal registration phase III, multicenter, randomized tuberculosis controlled trial: design issues and lessons learnt from the Gatifloxacin for TB (OFLOTUB) project. Trials. 2012;61:13.

    Google Scholar 

  39. Blomberg B, Spinaci S, Fourie B, Laing R. The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bull World Health Organ. 2001;79:61–8.

    Google Scholar 

  40. Albanna AS, Smith BM, Cowan D, Menzies D. Fixed-dose combination antituberculosis therapy: a systematic review and meta-analysis. Eur Respir J. 2013;42(3):721–32.

    Article  CAS  PubMed  Google Scholar 

  41. Nagelkerke NJD, De Vlas SJ, Mahendradhata Y, Ottenhoff THM, Borgdorff M. The search for a tuberculosis vaccine: an elusive quest? Tuberculosis. 2006;86(1):41–6.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

Authors declares that there is no any competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Kamaruz Zaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alom, S., Ali, F., Choudhury, D., Gohain, A., Ahmed, A.B., Zaman, M.K. (2023). Tuberculosis and Drug Delivery System: Clinical Trials in TB. In: Shegokar, R., Pathak, Y. (eds) Tubercular Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-14100-3_14

Download citation

Publish with us

Policies and ethics