Skip to main content

Surface-Modified Drug Delivery Systems for Tuberculosis Intervention

  • Chapter
  • First Online:
Tubercular Drug Delivery Systems

Abstract

Tuberculosis (TB) presents as the second most lethal infectious disease after HIV/AIDS and has presented difficulty in treatment over the years, due to prolonged duration of therapy and side effects of the drugs resulting in patient non-compliance and the development of multidrug resistance (MDR) strains. Anti-TB drugs incorporated in nanosystems may reduce side effects by delivering the drug selectively into infection reservoirs such as macrophages, which may assist in clearing the TB bacilli faster and reducing the duration of therapy. The rapid development of nanosciences has improved the targeted delivery of therapeutics, offering great benefits in the treatment of chronic diseases. Nanosystems demonstrate great prospect by specific and selective targeting, supported by their ability to be surface functionalized with targeting ligands. This chapter will therefore demonstrate the state of the art in the development of surface-modified nanotechnology incorporated with anti-TB therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents. 2014;43(6):485–96.

    CAS  PubMed  Google Scholar 

  2. Banik N, Hussain A, Ramteke A, Sharma HK, Maji TK. Preparation and evaluation of the effect of particle size on the properties of chitosan-montmorillonite nanoparticles loaded with isoniazid. RSC Adv. 2012;2(28):10519–28.

    CAS  Google Scholar 

  3. Bhardwaj A, Mehta S, Yadav S, Singh SK, Grobler A, Goyal AK, Mehta A. Pulmonary delivery of antitubercular drugs using spray-dried lipid–polymer hybrid nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44(6):1544–55.

    CAS  PubMed  Google Scholar 

  4. Brannon-Peppas L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm. 1995;116(1):1–9.

    CAS  Google Scholar 

  5. Carneiro SP, Carvalho KV, Soares RDDOA, Carneiro CM, de Andrade MHG, Duarte RS, Dos Santos ODH. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf B: Biointerfaces. 2019;175:306–13.

    CAS  PubMed  Google Scholar 

  6. Chandrupatla DM, Molthoff CF, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res. 2019;9(1):366–78.

    CAS  PubMed  Google Scholar 

  7. Chaubey P, Mishra B. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr Polym. 2014;101:1101–8.

    CAS  PubMed  Google Scholar 

  8. Chen HH, Huang WC, Chiang WH, Liu TI, Shen MY, Hsu YH, Lin SC, Chiu HC. pH-responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. Int J Nanomedicine. 2015;10:5035.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen L, Xie Z, Hu J, Chen X, Jing X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res. 2007;9(5):777–85.

    Google Scholar 

  10. Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):e0177987.

    PubMed  PubMed Central  Google Scholar 

  11. Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release. 2008;127(1):50–8.

    CAS  PubMed  Google Scholar 

  12. Costa A, Sarmento B, Seabra V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci. 2018;114:103–13.

    CAS  PubMed  Google Scholar 

  13. Dineshkumar P, Panneerselvam T, Deepti Brundavani K, Selvaraj K, Vijayaraj Kumar P. Formulation of rifampicin loaded PEGylated 5.0 G EDA-PAMAM dendrimers as effective long-duration release drug carriers. Curr Drug Ther. 2017;12(2):115–26.

    CAS  Google Scholar 

  14. Dong W, Ye J, Zhou J, Wang W, Wang H, Zheng X, Yang Y, Xia X, Liu Y. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein. Acta Pharm Sin B. 2020;10(8):1576–85.

    CAS  PubMed  Google Scholar 

  15. Dye C. Global epidemiology of tuberculosis. Lancet. 2006;367(9514):938–40.

    PubMed  Google Scholar 

  16. Fait ME, Hermet M, Comelles F, Clapés P, Alvarez HA, Prieto E, Herlax V, Morcelle SR, Bakás L. Microvesicle release and micellar attack as the alternative mechanisms involved in the red-blood-cell-membrane solubilization induced by arginine-based surfactants. RSC Adv. 2017;7(60):37549–58.

    CAS  Google Scholar 

  17. Gajendiran M, Gopi V, Elangovan V, Murali RV, Balasubramanian S. Isoniazid loaded core shell nanoparticles derived from PLGA–PEG–PLGA tri-block copolymers: in vitro and in vivo drug release. Colloids Surf B: Biointerfaces. 2013;104:107–15.

    CAS  PubMed  Google Scholar 

  18. Gao Y, Sarfraz MK, Clas SD, Roa W, Löbenberg R. Hyaluronic acid-tocopherol succinate-based self-assembling micelles for targeted delivery of rifampicin to alveolar macrophages. J Biomed Nanotechnol. 2015;11(8):1312–29.

    CAS  PubMed  Google Scholar 

  19. Garg T, Rath G, Murthy RR, Gupta UD, Vatsala PG, Goyal AK. Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis. Curr Pharm Des. 2015;21(22):3076–89.

    CAS  PubMed  Google Scholar 

  20. Grassin-Delyle S, Abrial C, Salvator H, Brollo M, Naline E, Devillier P. The role of toll-like receptors in the production of cytokines by human lung macrophages. J Innate Immun. 2020;12(1):63–73.

    CAS  PubMed  Google Scholar 

  21. Grotz E, Tateosian N, Amiano N, Cagel M, Bernabeu E, Chiappetta DA, Moretton MA. Nanotechnology in tuberculosis: state of the art and the challenges ahead. Pharm Res. 2018;35(11):1–22.

    CAS  Google Scholar 

  22. Haba Y, Kojima C, Harada A, Ura T, Horinaka H, Kono K. Preparation of poly (ethylene glycol)-modified poly (amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir. 2007;23(10):5243–6.

    CAS  PubMed  Google Scholar 

  23. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93.

    CAS  PubMed  Google Scholar 

  24. Jiang Z, You Y, Deng X, Hao J. Injectable hydrogels of poly (ɛ-caprolactone-co-glycolide)–poly (ethylene glycol)–poly (ɛ-caprolactone-co-glycolide) triblock copolymer aqueous solutions. Polymer. 2007;48(16):4786–92.

    CAS  Google Scholar 

  25. Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med. 2005;202(7):987–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Karthikeyan R, Koushik OS, Kumar VP. Surface modification of cationic dendrimers eases drug delivery of anticancer drugs. Nanosci Nanotechnol. 2016;10:108.

    Google Scholar 

  27. Kaur R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation ofelectrospun nanofibers: tool fortargeted vaginal delivery of antimicrobials against urinary tract infections. Curr Drug Deliv. 2015;22:328–34.

    CAS  Google Scholar 

  28. Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J Microencapsul. 2013;30(1):49–54.

    CAS  PubMed  Google Scholar 

  29. Kumar A, Garg T, Sarma GS, Rath G, Goyal AK. Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design. Eur J Pharm Sci. 2015;70:140–51.

    CAS  PubMed  Google Scholar 

  30. Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target. 2006;14(8):546–56.

    CAS  PubMed  Google Scholar 

  31. Lam PL, Wong WY, Bian Z, Chui CH, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine. 2017;12(4):357–85.

    CAS  PubMed  Google Scholar 

  32. Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517–26.

    CAS  PubMed  Google Scholar 

  33. Lee-Sayer SS, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol. 2015;6:150.

    PubMed  PubMed Central  Google Scholar 

  34. MacNeil A, Glaziou P, Sismanidis C, Maloney S, Floyd K. Global epidemiology of tuberculosis and progress toward achieving global targets—2017. Morb Mortal Wkly Rep. 2019;68(11):263.

    Google Scholar 

  35. Majoral JP, Zablocka M, Caminade AM, Balczewski P, Shi X, Mignani S. Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organic–metallic macromolecules. Coord Chem Rev. 2018;358:80–91.

    CAS  Google Scholar 

  36. Marcianes P, Negro S, García-García L, Montejo C, Barcia E, Fernández-Carballido A. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis. Int J Nanomedicine. 2017;12:1959.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marcianes P, Negro S, Barcia E, Montejo C, Fernández-Carballido A. Potential active targeting of gatifloxacin to macrophages by means of surface-modified PLGA microparticles destined to treat tuberculosis. AAPS PharmSciTech. 2020;21(1):1–14.

    Google Scholar 

  38. Maretti E, Costantino L, Rustichelli C, Leo E, Croce MA, Buttini F, Truzzi E, Iannuccelli V. Surface engineering of solid lipid nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm. 2017;528(1–2):440–51.

    CAS  PubMed  Google Scholar 

  39. Mariappan TT, Singh S. Regional gastrointestinal permeability of rifampicin and isoniazid (alone and their combination) in the rat. Int J Tuberc Lung Dis. 2003;7(8):797–803.

    CAS  PubMed  Google Scholar 

  40. Mignani S, Tripathi RP, Chen L, Caminade AM, Shi X, Majoral JP. New ways to treat tuberculosis using dendrimers as nanocarriers. Pharmaceutics. 2018;10(3):105.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moretton MA, Chiappetta DA, Andrade F, Das Neves J, Ferreira D, Sarmento B, Sosnik A. Hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J Biomed Nanotechnol. 2013;9(6):1076–87.

    CAS  PubMed  Google Scholar 

  42. Mustafa S, Devi VK, Pai RS. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Deliv Transl Res. 2017;7(1):27–36.

    CAS  PubMed  Google Scholar 

  43. Nissen JC, Selwood DL, Tsirka SE. Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J Neurochem. 2013;127(3):394–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohashi K, Kabasawa T, Ozeki T, Okada H. One-step preparation of rifampicin/poly (lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release. 2009;135(1):19–24.

    CAS  PubMed  Google Scholar 

  45. Pabreja S, Garg T, Rath G, Goyal AK. Mucosal vaccination against tuberculosis using Ag85A-loaded immunostimulating complexes. Artif Cells Nanomed Biotechnol. 2016;44(2):532–9.

    CAS  PubMed  Google Scholar 

  46. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 2003;52(6):981–6.

    CAS  PubMed  Google Scholar 

  47. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Google Scholar 

  48. Pawde DM, Viswanadh MK, Mehata AK, Sonkar R, Poddar S, Burande AS, Jha A, Vajanthri KY, Mahto SK, Dustakeer VA, Muthu MS. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J. 2020;28(12):1616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pi J, Shen L, Shen H, Yang E, Wang W, Wang R, Huang D, Lee BS, Hu C, Chen C, Jin H. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M tuberculosis killing efficiency. Mater Sci Eng C. 2019;103:109777.

    CAS  Google Scholar 

  50. Piccaro G, Poce G, Biava M, Giannoni F, Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J Antibiot. 2015;68(11):711–4.

    CAS  Google Scholar 

  51. Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin. Chem Phys Lipids. 2015;193:11–7.

    CAS  PubMed  Google Scholar 

  52. Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley D, Kreuter J, Von Briesen H. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci. 2000;12(6):1931–40.

    CAS  PubMed  Google Scholar 

  53. Ritsema JAS, Herschberg EMA, Borgos SE, Løvmo C, Schmid R, Te Welscher YM, Storm G, van Nostrum CF. Relationship between polarities of antibiotic and polymer matrix on nanoparticle formulations based on aliphatic polyesters. Int J Pharm. 2018;548(2):730–9.

    CAS  PubMed  Google Scholar 

  54. Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;7:381.

    Google Scholar 

  55. Sarfraz M, Shi W, Gao Y, Clas SD, Roa W, Bou-Chacra N, Löbenberg R. Immune response to antituberculosis drug-loaded gelatin and polyisobutyl-cyanoacrylate nanoparticles in macrophages. Ther Deliv. 2016;7(4):213–28.

    CAS  PubMed  Google Scholar 

  56. Sarkar K, Kumar M, Jha A, Bharti K, Das M, Mishra B. Nanocarriers for tuberculosis therapy: design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J Drug Deliv Sci Technol. 2021;67:102850.

    Google Scholar 

  57. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54(4):761–6.

    CAS  PubMed  Google Scholar 

  58. Shi X, Sun K, Baker JR Jr. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C. 2008;112(22):8251–8.

    CAS  Google Scholar 

  59. Shilpi S, Vimal VD, Soni V. Assessment of lactoferrin-conjugated solid lipid nanoparticles for efficient targeting to the lung. Prog Biomater. 2015;4(1):55–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Silva M, Lara AS, Leite CQF, Ferreira EI. Potential Tuberculostatic agents: micelle-forming copolymer poly (ethylene glycol)-poly (aspartic acid) prodrug with isoniazid. Archiv der Pharmazie Int J Pharm Med Chem. 2001;334(6):189–93.

    CAS  Google Scholar 

  61. Singh H, Bhandari R, Kaur IP. Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. Int J Pharm. 2013;446(1–2):106–11.

    CAS  PubMed  Google Scholar 

  62. Singh J, Garg T, Rath G, Goyal AK. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis–a critical review. Drug Deliv. 2016a;23(5):1676–98.

    CAS  PubMed  Google Scholar 

  63. Singh N, Gautam SP, Singh HL, Dhiman A, Siddiqui G, Verma A. Isonizid loded dendrimer based nano carriers for the delivery of anti-tuberculosis. Indian Res J Pharmacol Sci. 2016b;3:519–29.

    CAS  Google Scholar 

  64. Singh S, Mariappan TT, Sharda N, Kumar S, Chakraborti AK. The reason for an increase in decomposition of rifampicin in the presence of isoniazid under acid conditions. Pharm Pharmacol Commun. 2000;6(9):405–10.

    CAS  Google Scholar 

  65. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16(3):463–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sosnik A, Carcaboso ÁM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev. 2010;62(4–5):547–59.

    CAS  PubMed  Google Scholar 

  67. Su Y, Bakker T, Harris J, Tsang C, Brown GD, Wormald MR, Gordon S, Dwek RA, Rudd PM, Martinez-Pomares L. Glycosylation influences the lectin activities of the macrophage mannose receptor. J Biol Chem. 2005;280(38):32811–20.

    CAS  PubMed  Google Scholar 

  68. Thevenot J, Troutier AL, David L, Delair T, Ladavière C. Steric stabilization of lipid/polymer particle assemblies by poly (ethylene glycol)-lipids. Biomacromolecules. 2007;8(11):3651–60.

    CAS  PubMed  Google Scholar 

  69. Trousil J, Filippov SK, Hrubý M, Mazel T, Syrová Z, Cmarko D, Svidenská S, Matějková J, Kováčik L, Porsch B, Konefał R. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine. 2017;13(1):307–15.

    CAS  PubMed  Google Scholar 

  70. Vieira AC, Chaves LL, Pinheiro M, Lima SAC, Ferreira D, Sarmento B, Reis S. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells Nanomed Biotechnol. 2018a;46(sup1):653–63.

    CAS  PubMed  Google Scholar 

  71. Vieira AC, Chaves LL, Pinheiro S, Pinto S, Pinheiro M, Lima SC, Ferreira D, Sarmento B, Reis S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm. 2018b;536(1):478–85.

    CAS  PubMed  Google Scholar 

  72. Vijayaraj Kumar P, Agashe H, Dutta T, Jain NK. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv. 2007;4(1):11–9.

    PubMed  Google Scholar 

  73. Wijagkanalan W, Kawakami S, Takenaga M, Igarashi R, Yamashita F, Hashida M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release. 2008;125(2):121–30.

    CAS  PubMed  Google Scholar 

  74. Williams K, Minkowski A, Amoabeng O, Peloquin CA, Taylor D, Andries K, Wallis RS, Mdluli KE, Nuermberger EL. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother. 2012;56(6):3114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. World Health Organization. Implementing the end TB strategy: the essentials, No. WHO/HTM/TB/2015.31. World Health Organization; 2015.

    Google Scholar 

  76. WHO. Treatment guidelines for isoniazid-resistant tuberculosis. 2018 at https://www.who.int/tb/publications/2018/FAQ_TB_policy_recommendations_guidelines.pdf. Accessed on 15 Nov 2021.

  77. World Health Organization Global tuberculosis report (2020). Licences: CC BY-NC SA 3.0 IGO.

    Google Scholar 

  78. Wu Y, Li M, Gao H. Polymeric micelle composed of PLA and chitosan as a drug carrier. J Polym Res. 2009;16(1):11–8.

    CAS  Google Scholar 

  79. Yamori S, Ichiyama S, Shimokata K, Tsukamura M. Bacteriostatic and bactericidal activity of antituberculosis drugs against Mycobacterium tuberculosis, Mycobacterium avium-Mycobacterium intracellular complex and Mycobacterium kansasii in different growth phases. Microbiol Immunol. 1992;36(4):361–8.

    CAS  PubMed  Google Scholar 

  80. Zahoor A, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005;26(4):298–303.

    CAS  Google Scholar 

  81. Zhang Z, Lu J, Wang Y, Pang Y, Zhao Y. Prevalence and molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis isolates in China. Antimicrob Agents Chemother. 2014;58(1):364–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya E. Choonara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayodele, S., Kumar, P., van Eyk, A., Choonara, Y.E. (2023). Surface-Modified Drug Delivery Systems for Tuberculosis Intervention. In: Shegokar, R., Pathak, Y. (eds) Tubercular Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-14100-3_13

Download citation

Publish with us

Policies and ethics