Skip to main content

Alginate Nanoparticles: A Potential Drug Carrier in Tuberculosis Treatment

  • Chapter
  • First Online:

Abstract

Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with Mycobacterium tuberculosis, which is responsible for 8–10 million new cases of TB and 3 million deaths annually throughout the world. Over the past 50 years, with medical treatment and standard public health practices, tuberculosis diminished in developed countries and resulted in a loss of interest and funding for research in improving diagnostic and treatment options. In developing countries, efforts including BCG vaccination have failed to control tuberculosis, and the disease continues to spread as the world becomes more globalized. At the same time, multidrug-resistant tuberculosis has emerged, challenging even the most advance treatment centres. Various unique antibodies have been developed to overcome drug resistance, reduce the treatment regimen, and elevate the compliance to treatment. Therefore, we need an effective and robust system to subdue technological drawbacks and improve the effectiveness of therapeutic drugs which still remains a major challenge for pharmaceutical technology. Polymeric nanoparticulate carriers have shown convincing treatment and promising outcomes for chronic infectious diseases. Different types of nanocarriers have been evaluated as promising drug delivery systems for various administration routes. Controlled and sustained release of drugs is one of the advantages of nanoparticle-based antituberculosis drugs over free drug. It also reduces the dosage frequency and resolves the difficulty of low poor compliance. This chapter reviews sodium alginate-based nanotechnology therapies which can be used for the treatment of TB, with a short summary on bibliometric analysis that could provide significant information to researcher about ongoing research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dheda K, Barry CE 3rd, Maartens G. Tuberculosis. Lancet. 2016;387:1211–26.

    PubMed  Google Scholar 

  2. Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017;S2213-2600(17):30079–6.

    Google Scholar 

  3. Global tuberculosis report 2021, World Health Organization. https://www.who.int/publications/i/item/9789240037021.

  4. Sulis G, Roggi A, Matteelli A, Raviglione MC. Tuberculosis: epidemiology and control. Mediterr J Hematol Infect Dis. 2014;6(1):e2014070.

    PubMed  PubMed Central  Google Scholar 

  5. Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076. https://doi.org/10.1038/nrdp.2016.76.

    Article  PubMed  Google Scholar 

  6. Boudville DA, Joshi R, Rijkers GT. Migration and tuberculosis in Europe. J Clin Tuberc Other Mycobact Dis. 2020;18:100143.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui Y, Shen H, Wang F, Wen H, Zeng Z, Wang Y, Yu C. A long-term trend study of tuberculosis incidence in China, India and United States 1992–2017: a Joinpoint and age-period-cohort analysis. Int J Environ Res Public Health. 2020;17(9):3334.

    PubMed  PubMed Central  Google Scholar 

  8. Global Tuberculosis Report 2017: World Health Organisation. Available from: apps. who.int/iris/bitstream/hamdle/10665/259366/9789241565516-eng.pdf.

    Google Scholar 

  9. Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pietersen E, Ignatius E, Streicher EM, et al. Long-term outcomes of patients with extensively drug-resistant tuberculosis in South Africa: a cohort study. Lancet. 2014;383:1230–9.

    PubMed  Google Scholar 

  11. Dheda K, Gumbo T, Gandhi NR, et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respir Med. 2014;2:321–38.

    PubMed  PubMed Central  Google Scholar 

  12. Dheda K, Migliori GB. The global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdue? Lancet. 2012;379:773–5.

    PubMed  Google Scholar 

  13. Sotgiu G, Centis R, D’ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015;5(5):a017822.

    PubMed  PubMed Central  Google Scholar 

  14. Chan ED, Iseman MD. Current medical treatment for tuberculosis. BMJ. 2002;325(7375):1282–6.

    PubMed  PubMed Central  Google Scholar 

  15. Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: challenges and opportunities. Biomed Pharmacother. 2018;99:735–45.

    CAS  PubMed  Google Scholar 

  16. Gilani SJ, Ameeduzzafar, Jafar M, Shakil K, Imam SS. Nano-carriers for the treatment of tuberculosis. Recent Pat Antiinfect Drug Discov. 2017;12(2):95–106.

    CAS  PubMed  Google Scholar 

  17. Ain QU, Sharma S, Khuller GK, Garg SK. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetic and therapeutic effects. J Antimicrob Chemother. 2003;51:931–8.

    Google Scholar 

  18. Labana S, Pandey R, Sharma S, Khuller GK. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (INH and RIF) encapsulated in liposomes. Int J Antimicrob Agents. 2002;20:301–4.

    CAS  PubMed  Google Scholar 

  19. Bala I, Hariharan S, Ravi Kumar MNV. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21:387–422.

    CAS  PubMed  Google Scholar 

  20. Shah SP, Misra A. Development of liposomal amphotericin B dry powder inhaler formulation. Drug Deliv. 2004;11:247–53.

    CAS  PubMed  Google Scholar 

  21. Hurley L, Andersen BR. Biodegradable implants from poly-(alphahydroxy acid) polymers for isoniazid delivery. Int J Tuberc Lung Dis. 1999;3:1015–24.

    CAS  PubMed  Google Scholar 

  22. Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.

    CAS  PubMed  Google Scholar 

  23. Dahanayake MH, Jayasundera AC. Nano-based drug delivery optimization for tuberculosis treatment: a review. J Microbiol Methods. 2021;181:106127.

    CAS  PubMed  Google Scholar 

  24. Tabata J, Ikada Y. Protein pre-coating of polylactide microspheres containing a lipophilic immune potentiator for enhancement of macrophage phagocytosis and activation. Pharm Res. 1989;6:296–301.

    CAS  PubMed  Google Scholar 

  25. Bodmeier R, Chen H. Indomethacin polymeric nanosuspensions prepared by micro- fluidization. J Control Release. 1990;12:223–33.

    CAS  Google Scholar 

  26. Zahoor A, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005;26:298–303.

    CAS  Google Scholar 

  27. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27:108–18.

    CAS  PubMed  Google Scholar 

  28. Koosha F, Muller RH, Davis SS, Davies MC. The surface chemical structure of poly (hydroxybutyrate) microparticles produced by solvent evaporation process. J Control Release. 1989;9:149–57.

    CAS  Google Scholar 

  29. Choukaife H, Doolaanea AA, Alfatama M. Alginate nanoformulation: influence of process and selected variables. Pharmaceuticals. 2020;13:335.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2007;57:397–430.

    Google Scholar 

  31. Sorasitthiyanukarn FN, Muangnoi C, Bhuket PR, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising approach for Oral delivery of curcumin Diglutaric acid for cancer treatment. Mater Sci Eng. 2018;93:178–90.

    CAS  Google Scholar 

  32. Markeb AA, El-Maali NA, Sayed DM, et al. Synthesis, structural characterization, and preclinical efficacy of a novel paclitaxel-loaded alginate nanoparticle for breast cancer treatment. Int J Breast Cancer. 2016;2016:7549372.

    PubMed  PubMed Central  Google Scholar 

  33. Li M, Sun Y, Ma C, Hua Y, Zhang L, Shen J. Design and investigation of penetrating mechanism of Octaarginine-modified alginate nanoparticles for improving intestinal insulin delivery. J Pharm Sci. 2021;110(1):268–79.

    CAS  PubMed  Google Scholar 

  34. Baek S, Joo SH, Toborek M. Treatment of antibiotic-resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: insights into treatment mechanisms. J Hazard Mater. 2019;373:122–30.

    CAS  PubMed  Google Scholar 

  35. Scolari IR, Páez PL, Musri MM, Petiti JP, Torres A, Granero GE. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against staphylococcus aureus. Drug Deliv Transl Res. 2020;10:1403–17.

    CAS  PubMed  Google Scholar 

  36. Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers. 2016b;8(2):30.

    PubMed  PubMed Central  Google Scholar 

  37. Leong JY, Lam WH, Ho KW, et al. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology. 2016;24:44–60.

    CAS  Google Scholar 

  38. Pestovsky YS, Martínez-Antonio A. The synthesis of alginate microparticles and nanoparticles. Drug Des Intellect Prop Int J. 2019;3:293–327.

    Google Scholar 

  39. Mendoza-Muñoz N, Alcalá-Alcalá S, Quintanar-Guerrero D. Preparation of polymer nanoparticles by the emulsification-solvent evaporation method: from Vanderho’s pioneer approach to recent adaptations. In: Polymer nanoparticles for nanomedicines. Cham: Springer; 2016. p. 87–121.

    Google Scholar 

  40. Muhaimin BR. Effect of solvent type on preparation of ethyl cellulose microparticles by solvent evaporation method with double emulsion system using focused beam reflectance measurement. Polym Int. 2017;66:1448–55.

    CAS  Google Scholar 

  41. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci. 1993;82:912–7.

    CAS  PubMed  Google Scholar 

  42. Saether HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym. 2008;74:813–21.

    CAS  Google Scholar 

  43. Jardim KV, Palomec-Garfias AF, Andrade BYG, et al. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Mater Sci Eng. 2018;92:184–95.

    CAS  Google Scholar 

  44. Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull. 2015;5(1):57–67.

    PubMed  PubMed Central  Google Scholar 

  45. Abdelghany S, Parumasivam T, Pang AB, et al. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J Drug Deliv Sci Technol. 2019;52:642.

    CAS  Google Scholar 

  46. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172:1487–90.

    PubMed  PubMed Central  Google Scholar 

  47. Etiology and transmission of tuberculosis. Module 1. Global TB NJMS.

    Google Scholar 

  48. Transmission and Pathogenesis of Tuberculosis. Chapter 2. Centers for disease control and prevention (CDC) available on https://www.cdc.gov/tb/education/corecurr/pdf/chapter2.pdf

  49. Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: challenges and opportunities. J Biomed Pharmacother. 2018;99:735–45.

    CAS  Google Scholar 

  50. Nanotechnology for Drug Delivery Applications. Azonano. 2017; 11. https://www.azonano.com/article.aspx?ArticleID=4668

  51. Patra J, Das G, Fraceto LF, Ramos Campos EV, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.

    Google Scholar 

  52. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2:85–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in drug delivery. New York: Science & Business Media; 2008.

    Google Scholar 

  54. Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struc Biotechnol J. 2013;5:e201302011.

    Google Scholar 

  55. Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos M, Hodoscek M, Golic Grdadolnik S. Strategies in the rational drug design. Curr Med Chem. 2011;18:2517–30.

    CAS  PubMed  Google Scholar 

  56. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.

    Google Scholar 

  57. Almalik A, Benabdelkamel H, Masood A, et al. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein corona. Sci Rep. 2017;7:10542.

    PubMed  PubMed Central  Google Scholar 

  58. Martens TF, Remaut K, Deschout H, et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92.

    CAS  PubMed  Google Scholar 

  59. Gao WW, Zhang LF. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015;23:619–26.

    CAS  PubMed  Google Scholar 

  60. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pelaz B, del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9:6996–7008.

    CAS  PubMed  Google Scholar 

  62. Muller J, Bauer KN, Prozeller D, et al. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials. 2017;115:1–8.

    CAS  PubMed  Google Scholar 

  63. Bansal AK. Excipients used in nano-technology assisted drug delivery systems. J Excipeint and Food Chem. 2014;5(4):173–6.

    Google Scholar 

  64. Smidsrod O, Draget KI. Chemistry and physical properties of alginates. Carbohydr Eur. 1996;14:6–13.

    Google Scholar 

  65. Skjak-Braek G, Espevik T. Application of alginate gels in biotechnology and biomedicine. Carbohydr Eur. 1996;14:19–25.

    Google Scholar 

  66. Ahmad Z, Pandey R, Sharma S, et al. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents. 2006;27:420–7.

    Google Scholar 

  67. Ahmad Z, Pandey R, Sharma S, et al. Alginate nanoparticles as antitubercular drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006;48:171–6.

    PubMed  Google Scholar 

  68. Yang JS, Xie YJ, He W. Research progress on chemical modification of alginate: a review. Carbohydr Polym. 2011;84:33–9.

    CAS  Google Scholar 

  69. Thomas D, Latha MS, Thomas KK. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol. 2018;46:392–9.

    CAS  Google Scholar 

  70. Shehzada A, Rehmana G, Ul-Islamb M, Khattakb WA, Leea YS. Challenges in the development of drugs for the treatment of tuberculosis. Braz J Infect Dis. 2013;17(1):74–81.

    Google Scholar 

  71. Mani G, Jainuddin Y, Vellaichamy E, et al. Gold nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. J Mater Chem B. 2014;2:418–47.

    Google Scholar 

  72. Jennifer CG, Jamee B, Carly JC, et al. Thiol-modified gold nanoparticles for the inhibition of Mycobacterium smegmatis. Chem Commun. 2014;50:15860–3.

    Google Scholar 

  73. Chinmayee S, Anowar H, Anand R, et al. Crosslinked thiolated starch coated Fe3O4 magnetic nanoparticles: effect of montmorillonite and crosslinking density on drug delivery properties. Starch Biosynth Nutr Biomed. 2014;66(7–8):760–71.

    Google Scholar 

  74. Hwang J, Son J, Seo Y, et al. Functional silica nanoparticles conjugated with beta-glucan to deliver anti-tuberculosis drug molecules. J Ind Eng Chem. 2018;58:376–85.

    CAS  Google Scholar 

  75. Clemens DL, Lee BY, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pandey R, Khullar GK. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J Antimicrob Chemother. 2006;57:1146–52.

    CAS  PubMed  Google Scholar 

  77. Pandey R, Khullar GK. Nanoparticle-based oral drug delivery system for an injectable antibiotic–streptomycin. Chemotherapy. 2007;53:437–41.

    CAS  PubMed  Google Scholar 

  78. Pandey R, Zahoor A, Sharma S, et al. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis. 2003;83:373–8.

    PubMed  Google Scholar 

  79. Sharma A, Sharma S, Khullar GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54:761–6.

    CAS  PubMed  Google Scholar 

  80. Kumar PV, Asthana A, Dutta T, et al. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target. 2006;14(8):546–56.

    CAS  PubMed  Google Scholar 

  81. Bellini RG, Guimaraes AP, Pacheco MAC, et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model. 2015;60:34–42.

    CAS  PubMed  Google Scholar 

  82. Saeid R, Luca C, Lam JKW. Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol. 2016;291:366–74.

    Google Scholar 

  83. Raval T, Parmar R, Tyagi RK, et al. Rifampicin loaded chitosan nanoparticle improved dry powder presents a therapeutic approach for alveolar tuberculosis. Colloids Surf B: Biointerfaces. 2017;154:321–30.

    Google Scholar 

  84. Rajan M, Raj V. Encapsulation, characterisation and in-vitro release of anti-tuberculosis drug using chitosan – poly ethylene glycol nanoparticles. Int J Pharm Sci. 2012;4(4):255–9.

    CAS  Google Scholar 

  85. Oliveira PM, Matos BN, Pereira PAT, et al. Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr Polym. 2017;174:421–31.

    CAS  PubMed  Google Scholar 

  86. Ansari N, Ghasvini K, Ramezani M, et al. Selection of DNA aptamers against mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Microchim Acta. 2018;185:01–21.

    CAS  Google Scholar 

  87. Ryan KJ, Ray CG, editors. Sherris Medical Microbiology. 4th ed. McGraw Hill; 2004.

    Google Scholar 

  88. World Health organization 2018, Global Tuberculosis Report. https://www.who.int/tb/publications/global_report/en/

  89. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg. 2017;58:E9–E12.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sieniawska E, Maciejewska Turska M, Świątek L, Xiao J. Plantbased food products for antimycobacterial therapy. eFood. 2020;1(3):199–216.

    Google Scholar 

  91. Madikizela B, Kambizi L, McGaw LJ. An ethnobotanical survey of plants used traditionally to treat tuberculosis in the eastern region of O.R. Tambo district, South Africa. S Afr J Bot. 2017;109:231–6.

    Google Scholar 

  92. Lawal IO, Grierson DS, Afolayan AJ. Phytotherapeutic information on plants used for the treatment of tuberculosis in Eastern Cape Province. South Africa Evid Based Complement Alternat Med. 2014;2014:735423.

    CAS  PubMed  Google Scholar 

  93. Semenya SS, Maroyi A. Ethnobotanical survey of plants used by Bapedi traditional healers to treat tuberculosis and its opportunistic infections in the Limpopo Province. South Africa S Afr J Bot. 2019;122:401–21.

    Google Scholar 

  94. Bunalema L, Obakiro S, Tabuti JR, Waako P. Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda. J Ethnopharmacol. 2014;151:999–1004.

    PubMed  Google Scholar 

  95. Gupta VK, Kaushik A, Chauhan DS, Ahirwar RK, Sharma S, Bisht D. Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms. J Ethnopharmacol. 2018;227:113–20.

    PubMed  Google Scholar 

  96. Buszczyński S. Opis 125 ziół używanych w lecznictwie z podaniem ich uprawy i zastosowania. Berlin: “Przewodnik Zdrowia.”. Berlin: Health Guide; 1905.

    Google Scholar 

  97. Molyneux RJ, Lee ST, Gardner DR, et al. Phytochemicals: the good, the bad and the ugly? Phytochemistry. 2007;68(22–24):2973–85.

    CAS  PubMed  Google Scholar 

  98. Goldberg G. The report of a British nutrition foundation task force. Plants: diet and health. Oxford/London: Blackwell Publishing Ltd.; 2003. p. 347.

    Google Scholar 

  99. Kerr P. Plants and tuberculosis: phytochemicals potentially useful in the treatment of tuberculosis. Amsterdam: Academic; 2013. p. 45–64.

    Google Scholar 

  100. Veluthoor S, Anil P, Mandal V, Mukherjee K. Chapter 15: Phytochemicals: in pursuit of antitubercular drugs. In: Rahman A-U, editor. Studies in natural product chemistry, vol. 38. Elsevier Publications; 2012. p. 417.

    Google Scholar 

  101. Miron T, Rabinikov A, Mirelman D, et al. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta. 2000;1463:20–30.

    CAS  PubMed  Google Scholar 

  102. Rao RR, Rao SS, et al. Inhibition of Mycobacterium tuberculosis by garlic extract. Nature. 1946;157:441.

    CAS  PubMed  Google Scholar 

  103. Ratnakar P, Murthy S. Purification and mechanism of antitubercular principle from garlic (Allium sativum) active against isoniazid susceptible and resistant Mycobacterium tuberculosis H37Rv. Ind J Clin Biochem. 1995;10(1):34–8.

    CAS  Google Scholar 

  104. Viswanathan V, Phadatare AG, Mukne A. Antimycobacterial and antibacterial activity of Allium sativum bulbs. Ind J Pharm Sci. 2014;76(3):256–61.

    CAS  Google Scholar 

  105. Dwivedi VP, Bhattacharya D, Singh M, et al. Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. J Ethnopharmacol. 2019;243:111634.

    CAS  PubMed  Google Scholar 

  106. Prabu A, Hassan S, Prabuseenivasana AS, et al. Andrographolide: a potent antituberculosis compound that targets aminoglycoside 2-N- acetyltransferase in Mybacterium tuberculosis. J Mol Graph Mod. 2015;61:133–40.

    CAS  Google Scholar 

  107. Vetting MW, Hegde SS, Javid-Majd F, et al. Aminoglycoside 2′- N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat Struct Biol. 2002;9(9):653–8.

    CAS  PubMed  Google Scholar 

  108. Garg HK, Shrivastava A. Cytotoxic potential of Andrographolide against Bovine Tuberculosis. IOSR J Pharm Biol Sci. 2013;8(5):1–4.

    Google Scholar 

  109. Garg HK, Shrivastava A. Clinical use of andrographolide as a potential drug against vole tuberculosis. Int J Pure Appl Zool. 2013;1(3):223–6.

    Google Scholar 

  110. Dwivedi VP, Bhattacharya D, Yadav V, et al. The phytochemical bergenin enhances T helper responses and antimycobacterial immunity by activating the map kinase pathway in macrophages. Front Cell Infect Microbiol. 2017;7:149.

    PubMed  PubMed Central  Google Scholar 

  111. Kumar S, Sharma C, Kaushik SR, et al. The phytochemical Bergenin as an adjunct immunotherapy for tuberculosis in mice. J Bio Chem. 2019;294(21):8555–63.

    CAS  Google Scholar 

  112. Gupta PK, Kulkarni S, Rajan R. Inhibition of intracellular survival of multi drug resistant clinical isolates of Mycobacterium tuberculosis in macrophages by curcumin. Op Anti Agt J. 2013;4:1–5.

    Google Scholar 

  113. Bai X, Oberley-Deegan RE, Bai A. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology. 2016;21:951–7.

    PubMed  Google Scholar 

  114. Barua N, Buragohain A. Therapeutic potential of curcumin as an Antimycobacterial agent. Biomol Ther. 2021;11(9):1278.

    CAS  Google Scholar 

  115. Rehman SU, Choe K, Yoo HH. Review on a traditional herbal medicine, Eurycoma longifolia jack (tongkat ali): its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules (Basel, Switzerland). 2016;21(3):331.

    PubMed  Google Scholar 

  116. Lee HJ, Ko HJ, Kim SH, Jung YJ. Pasakbumin A. Controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages. PLoS One. 2019;14(3):e0199799.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chaieb K, Kouidhi B, Jrah H, et al. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med. 2011;11:29.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gupta R, Thakur B, Singh P, et al. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res. 2010;131:809–13.

    PubMed  Google Scholar 

  119. Pablos-Mendez A, Raviglione MC, Laszlo A, et al. Global surveillance for antituberculosis-drug resistance, 1994–1997. World Health Organization-International Union against tuberculosis and lung disease working group on anti-tuberculosis drug resistance surveillance. N Engl J Med. 1998;338(23):1641–9.

    CAS  PubMed  Google Scholar 

  120. World Health Organization. Global Tuberculosis Report 2015. Geneva: World Health Organization; 2015. https://apps.who.int/iris/bitstream/handle/10665/191102/9789241565059_eng.pdf?sequence=1&isAllowed=y

    Google Scholar 

  121. Adhvaryu MR, Reddy N, Vakharia BC. Prevention of hepatotoxicity due to anti tuberculosis treatment: a novel integrative approach. World J Gastroenterol. 2008;14(30):4753–62.

    PubMed  PubMed Central  Google Scholar 

  122. Skakun NP, Shman’ko VV. Synergistic effect of rifampicin on hepatotoxicity of isoniazid. Antibiot Med Biotekhnol. 1985;30(3):185–9.

    CAS  PubMed  Google Scholar 

  123. Fountain FF, Tolley E, Chrisman CR, Self TH. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tub tuberculosis clinic. Chest. 2005;128(1):116–23.

    CAS  PubMed  Google Scholar 

  124. van Rie A, Warren R, Richardson M, et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med. 1999;341(16):1174–9.

    PubMed  Google Scholar 

  125. Cox HS, Morrow M, Deutschmann PW. Long term efficacy of DOTS regimens for tuberculosis: systematic review. BMJ. 2008;336(7642):484–7.

    PubMed  PubMed Central  Google Scholar 

  126. Lian YT, Yang XF, Wang ZH, Yang Y, Yang Y, Shu YW, et al. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother Res. 2013;27(9):1321–7.

    CAS  PubMed  Google Scholar 

  127. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.

    PubMed  Google Scholar 

  128. Changtam C, Hongmanee P, Suksamrarn A. Isoxazole analogs of curcuminoids with highly potent multidrug-resistant antimycobacterial activity. Eur J Med Chem. 2010;45(10):4446–57.

    CAS  PubMed  Google Scholar 

  129. Bai X, Oberley-Deegan RE, Bai A, et al. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology. 2016;21(5):951–7.

    PubMed  Google Scholar 

  130. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10(3):511–45.

    CAS  PubMed  Google Scholar 

  132. Tousif S, Singh DK, Mukherjee S, et al. Nanoparticle-formulated curcumin prevents Posttherapeutic disease reactivation and reinfection with mycobacterium tuberculosis following isoniazid therapy. Front Immunol. 2017;8:1–12.

    Google Scholar 

  133. Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, Chopade BA. Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int J Antimicrob Agents. 2015;46(2):183–8.

    CAS  PubMed  Google Scholar 

  134. Singh R, Nawale L, Arkile M, et al. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine. 2016;11:1889–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gupta A, Pandey S, Variya B, Shah S, Yadav JS. Green synthesis of gold nanoparticles using different leaf extracts of Ocimum gratissimum Linn for anti-tubercular activity. Curr Nanomed. 2019;9(2):146–57.

    CAS  Google Scholar 

  136. Sudjarwo SA, Wardani G, Eraiko K. The potency of Pinus merkusii extract nanoparticles as anti Mycobacterium tuberculosis: an in vitro study. Int J Nutr Pharmacol Neurol Dis. 2019;9:48–52.

    CAS  Google Scholar 

  137. Welin A. Survival strategies of Mycobacterium tuberculosis inside the human macrophage. Linköping University Electronic Press; 2011. https://www.diva-portal.org/smash/get/diva2:395814/FULLTEXT02.pdf

    Google Scholar 

  138. Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136(1):37–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Seral C, Carryn S, Tulkens PM, Van Bambeke F. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by listeria monocytogenes or Staphylococcus aureus. J Antimicrob Chemother. 2003;51(5):1167–73.

    CAS  PubMed  Google Scholar 

  140. Jayeoye TJ, Eze FN, Olatunde OO, Singh S, Zuo J, Olatunji OJ. Multifarious biological applications and toxic Hg2+ sensing potentiality of biogenic silver nanoparticles based on Securidaca inappendiculata Hassk stem extract. Int J Nanomedicine. 2021;16:7557.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Syukri DM, Nwabor OF, Singh S, Voravuthikunchai SP. Antibacterial functionalization of nylon monofilament surgical sutures through in situ deposition of biogenic silver nanoparticles. Surf Coat Technol. 2021;413:127090.

    CAS  Google Scholar 

  142. Eze FN, Nwabor OF. Valorization of Pichia spent medium via one-pot synthesis of biocompatible silver nanoparticles with potent antioxidant, antimicrobial, tyrosinase inhibitory and reusable catalytic activities. Mater Sci Eng C. 2020;115:111104.

    CAS  Google Scholar 

  143. Syukri DM, Nwabor OF, Singh S, Ontong JC, Wunnoo S, Paosen S, et al. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J Microbiol Methods. 2020;174:105955.

    CAS  PubMed  Google Scholar 

  144. Marques L, Martinez G, Guidelli É, Tamashiro J, Segato R, Payão SLM, et al. Performance on bone regeneration of a silver nanoparticle delivery system based on natural rubber membrane NRL-AgNP. Coatings. 2020;10(4):323.

    CAS  Google Scholar 

  145. Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for stem cell tracking and the potential treatment of cardiovascular diseases. Front Cell Dev Biol. 2021;9:662406.

    PubMed  PubMed Central  Google Scholar 

  146. Singh S, Chunglok W, Nwabor OF, Ushir YV, Singh S, Panpipat W. Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J Polym Environ. 2022;30(3):938–953.

    Google Scholar 

  147. Jayeoye TJ, Eze FN, Singh S, Olatunde OO, Benjakul S, Rujiralai T. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int J Biol Macromol. 2021;179:196–205.

    CAS  PubMed  Google Scholar 

  148. Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive eucalyptus leaf extracts. Food Biosci. 2020;36:100609.

    CAS  Google Scholar 

  149. Ontong JC, Singh S, Nwabor OF, Chusri S, Voravuthikunchai SP. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol Lett. 2020;42(12):2653–64.

    CAS  PubMed  Google Scholar 

  150. Ellis TD. Multi-metallic microparticles for the treatment of pulmonary tuberculosis. ACS Nano. 2018;12(6):5228–40.

    CAS  PubMed  Google Scholar 

  151. Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, et al. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine. 2016;11:1889.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Choi S-R, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):e0177987.

    PubMed  PubMed Central  Google Scholar 

  153. Mishra A, Mehdi SJ, Irshad M, Ali A, Sardar M, Moshahid M, et al. Effect of biologically synthesized silver nanoparticles on human cancer cells. Sci Adv Mater. 2012;4(12):1200–6.

    CAS  Google Scholar 

  154. Wu X, Ye L, Liu K, et al. Antibacterial properties of mesoporous copper-doped silica xerogels. Biomed Mater. 2009;4(4):045008.

    PubMed  Google Scholar 

  155. Van Deun A, Decroo T, Piubello A, De Jong B, Lynen L, Rieder H. Principles for constructing a tuberculosis treatment regimen: the role and definition of core and companion drugs. Int J Tuberc Lung Dis. 2018;22(3):239–45.

    PubMed  Google Scholar 

  156. Organization WH. Tuberculosis. Geneva: World Health Organization; 2021 [cited 2021 10.12.2021]. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis

  157. Diel R, Sotgiu G, Andres S, Hillemann D, Maurer F. Cost of multidrug resistant tuberculosis in Germany—an update. Int J Infect Dis. 2021;103:102–9.

    CAS  PubMed  Google Scholar 

  158. Naz F, Ahmad N, Wahid A, Ahmad I, Khan A, Abubakar M, et al. High rate of successful treatment outcomes among childhood rifampicin/multidrug-resistant tuberculosis in Pakistan: a multicentre retrospective observational analysis. BMC Infect Dis. 2021;21(1):1–11.

    Google Scholar 

  159. Scolari IR, Páez PL, Musri MM, Petiti JP, Torres A, Granero GE. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Deliv Transl Res. 2020;10(5):1403–17.

    CAS  PubMed  Google Scholar 

  160. Il Kim M, Park CY, Seo JM, et al. In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for Imageable drug-delivery system. ACS Appl Mater Interfaces. 2021;13(31):36697–708.

    CAS  PubMed  Google Scholar 

  161. Ezenwoke OA, Ezenwoke A, Eluyela F, Olusanmi O. A bibliometric study of accounting information systems research from 1975–2017. Asian J Sci Res. 2019;12(2):167–78.

    Google Scholar 

  162. Brian HG, Caldwell DM, Chaimani A, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.

    Google Scholar 

  163. Moral-Muñoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ. Software tools for conducting bibliometric analysis in science: an up-to-date review. Profesional De La Informacion. 2020;29:4.

    Google Scholar 

  164. Cisneros L, Ibanescu M, Keen C, Lobato-Calleros O, Niebla-Zatarain J. Bibliometric study of family business succession between 1939 and 2017: mapping and analyzing authors’ networks. Scientometrics. 2018;117(2):919–51.

    Google Scholar 

  165. Zupic I, Čater T. Bibliometric methods in management and organization. Organ Res Methods. 2015;18(3):429–72.

    Google Scholar 

  166. Combs JG, Ketchen J, David J, Crook TR, Roth PL. Assessing cumulative evidence within ‘macro’ research: why meta-analysis should be preferred over vote counting. J Manag Stud. 2011;48(1):178–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh P. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, R.P., Patel, G.K., Patel, N., Singh, S., Chittasupho, C. (2023). Alginate Nanoparticles: A Potential Drug Carrier in Tuberculosis Treatment. In: Shegokar, R., Pathak, Y. (eds) Tubercular Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-14100-3_11

Download citation

Publish with us

Policies and ethics