Skip to main content

Solar Urban Planning in African Cities: Challenges and Prospects

  • Chapter
  • First Online:
Decarbonisation Pathways for African Cities

Abstract

This chapter aims to identify and evaluate the opportunities and challenges of solar urban planning in Africa’s cities. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, 37 publications were selected and thematically analysed. It emerged that the vast solar energy potentials, formalised urban planning systems, declining costs, and rising acceptance of solar PVs are key opportunities for solar urban planning. Urban informality, inadequate technical expertise, regulatory bottlenecks, and non-compliance with building regulations are critical barriers to Africa’s solar urban planning. Research on the subject was found to be limited. Studies that explore decision support systems and strategies for integrating solar concerns into urban planning using multi-criteria assessments will be instrumental for realising this concept in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenle, A. A. (2020). Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy, 137, 111180. https://doi.org/10.1016/j.enpol.2019.111180

  • Akrofi, M. M., & Okitasari, M. (2022). Integrating solar energy considerations into urban planning for low carbon cities: a systematic review of the state-of-the-art. Urban Governance. https://doi.org/10.1016/j.ugj.2022.04.002

  • Amado, M., & Poggi, F. (2014). Solar urban planning: a parametric approach. Energy Procedia, 48, 1539–1548. https://doi.org/10.1016/j.egypro.2014.02.174

  • Amado, M., & Poggi, F. (2012). Towards solar urban planning: A new step for better energy performance. Energy Procedia, 30, 1261–1273. https://doi.org/10.1016/j.egypro.2012.11.139

  • Barau, A. S., Abubakar, A. H., & Kiyawa, A.-H. I. (2020). Not There Yet: Mapping Inhibitions to Solar Energy Utilisation by Households in African Informal Urban Neighbourhoods. Sustainability 2020, Vol. 12, Page 840, 12(3), 840. https://doi.org/10.3390/SU12030840

  • Boamah, F. (2020). Desirable or debatable? Putting Africa’s decentralised solar energy futures in context. Energy Research and Social Science, 62, 101390. https://doi.org/10.1016/j.erss.2019.101390

  • Boamah, F., & Rothfuß, E. (2018). From technical innovations towards social practices and socio-technical transition? Re-thinking the transition to decentralised solar PV electrification in Africa. Energy Research and Social Science, 42, 1–10. https://doi.org/10.1016/j.erss.2018.02.019

  • Haine, K., & Blumberga, D. (2016). Towards Solar Urban Planning: A New Step for Better Energy Performance Case of Study Ibenbadis, Constantine (Algeria). Energy Procedia, 95, 145–152. https://doi.org/10.1016/j.egypro.2016.09.036

  • Hanna, T. (2016). Solar Urban Planning: Addressing barriers and conflicts specific to Renewable Energy Policy and the current field and practice of Urban Planning within the context of a changing Climate. Capstone Collection, 2956. http://digitalcollections.sit.edu/capstones/2956

  • IEA. (2014). Technology Roadmap Solar Photovoltaic Energy - 2014 edition. www.iea.org

  • IEA. (2020). Renewables 2020: Analysis and forecast to 2025. https://www.iea.org/reports/renewables-2020/solar-pv

  • IMF. (2020). World Economic Outlook (October 2020) - Real GDP growth. https://www-imf-org.link.unu.edu/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD/AFQ

  • IRENA. (2016). Solar PV in Africa: Costs and Markets. /publications/2016/Sep/Solar-PV-in-Africa-Costs-and-Markets

    Google Scholar 

  • IRENA. (2019). Solar simulators: Application to developing cities. www.irena.org

  • IRENA. (2020). Renewable Power Generation Costs in 2019. In /publications/2020/Jun/Renewable-Power-Costs-in-2019. /publications/2020/Jun/Renewable-Power-Costs-in-2019

    Google Scholar 

  • Iwaro, J., & Mwasha, A. (2010). A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy, 38(12), 7744–7755. https://doi.org/10.1016/j.enpol.2010.08.027

  • Jakica, N. (2018). State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. In Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1296–1328). https://doi.org/10.1016/j.rser.2017.05.080

  • Kanters, J., Dubois, M. C., & Wall, M. (2013). Architects design process in solar-integrated architecture in Sweden. Architectural Science Review, 56(2), 141–151. https://doi.org/10.1080/00038628.2012.681031

  • Kanters, J., & Wall, M. (2018). Experiences from the urban planning process of a solar neighbourhood in Malmö, Sweden. Urban, Planning and Transport Research, 6(1), 54–80. https://doi.org/10.1080/21650020.2018.1478323

  • Lauka, D., Haine, K., Gusca, J., & Blumberga, D. (2018). Solar energy integration in future urban plans of the South and Nordic cities. Energy Procedia, 152, 1127–1132. https://doi.org/https://doi.org/10.1016/j.egypro.2018.09.137

  • Lobaccaro, G., Carlucci, S., Croce, S., Paparella, R., & Finocchiaro, L. (2017a). Boosting solar accessibility and potential of urban districts in the Nordic climate: A case study in Trondheim. Solar Energy, 149, 347–369. https://doi.org/10.1016/j.solener.2017.04.015

  • Lobaccaro, G., Lindkvist, C., Wall, M., & Wyckmans, A. (2017b). Illustrative Perspective of Solar Energy in Urban Planning. https://doi.org/10.18777/ieashc-task51-2017-0002

  • Lundgren, M., & Dahlberg, J. (2018). Approaches, Methods and Tools for Solar Energy in Urban Planning. https://doi.org/10.18777/ieashc-task51-2018-0004

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. In BMJ (Online) (Vol. 339, Issue 7716, pp. 332–336). British Medical Journal Publishing Group. https://doi.org/10.1136/bmj.b2535

  • Mukisa, N., Zamora, R., & Lie, T. T. (2019). Feasibility assessment of grid-tied rooftop solar photovoltaic systems for industrial sector application in Uganda. Sustainable Energy Technologies and Assessments, 32, 83–91. https://doi.org/10.1016/j.seta.2019.02.001

  • Nuhu, S. (2019). Peri-Urban Land Governance in Developing Countries: Understanding the Role, Interaction and Power Relation Among Actors in Tanzania. Urban Forum, 30(1), 1–16. https://doi.org/10.1007/s12132-018-9339-2

  • Nwokocha, C. O., Okoro, U. K., & Usoh, C. I. (2018). Photovoltaics in Nigeria – Awareness, attitude and expected benefit based on a qualitative survey across regions. Renewable Energy, 116, 176–182. https://doi.org/10.1016/j.renene.2017.09.070

  • Okunlola, A., Jacobs, D., Ntuli, N., Fourie, R., Nagel, L., & Helgenberger, S. (2019). Consumer savings through solar PV self-consumption in South Africa: Assessing the co-benefits of decarbonising the power sector. https://doi.org/10.2312/iass.2019.007

  • Oluoch, S., Lal, P., Susaeta, A., & Vedwan, N. (2020). Assessment of public awareness, acceptance and attitudes towards renewable energy in Kenya. Scientific African, 9, e00512. https://doi.org/10.1016/j.sciaf.2020.e00512

  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

  • Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K. J., Wilberforce, T., & Olabi, A. G. (2021). Environmental impacts of solar energy systems: A review. Science of the Total Environment, 754, 141989. https://doi.org/10.1016/j.scitotenv.2020.141989

  • Sattler, S., Zluwa, I., & Österreicher, D. (2020). The “PV Rooftop Garden”: Providing Recreational Green Roofs and Renewable Energy as a Multifunctional System within One Surface Area. Applied Sciences, 10(5), 1791. https://doi.org/10.3390/app10051791

  • Sikder, S., Eanes, F., Asmelash, H., Kar, S., & Koetter, T. (2016). The Contribution of Energy-Optimized Urban Planning to Efficient Resource Use–A Case Study on Residential Settlement Development in Dhaka City, Bangladesh. Sustainability, 8(2), 119. https://doi.org/10.3390/su8020119

  • Silva, C. N. (2015). Urban Planning in Sub-Saharan Africa: Colonial and Post-Colonial Planning Cultures (C. N. Silva (ed.); 1st ed.). Routledge.

    Google Scholar 

  • Strazzera, E., & Statzu, V. (2017). Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance. Renewable Energy, 102, 361–371. https://doi.org/10.1016/j.renene.2016.10.056

  • United Nations. (2018). Cities and Pollution contribute to climate change. United Nations. https://www.un.org/en/climatechange/cities-pollution.shtml

  • Wall, M., Snow, M., Dahlberg, J., Lundgren, M., Lindkvist, C., Lobaccaro, G., Siems, T., Simon, K., Cristina, M., & Probst, M. (2017, October 28). Urban Planning for Solar Energy-IEA SHC TASK 51. ISES Solar World Congress 2017. https://doi.org/10.18086/swc.2017.37.06

  • World Bank. (2017). World Bank Open Data | Data. https://data.worldbank.org/

  • World Bank. (2020, December). Global Solar Atlas. https://globalsolaratlas.info

Download references

Acknowledgement

This chapter was extracted from the first author’s ongoing PhD thesis at the United Nations University Institute for the Advanced Study of Sustainability (UNU-IAS). We are grateful to the Japan Foundation for the United Nations University (JFUNU), which provided a scholarship for his doctoral studies at the UNU-IAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Akrofi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akrofi, M.M., Okitasari, M., Ohunakin, O.S., Azubuike, S.I. (2022). Solar Urban Planning in African Cities: Challenges and Prospects. In: Azubuike, S.I., Asekomeh, A., Gershon, O. (eds) Decarbonisation Pathways for African Cities. Palgrave Studies in Climate Resilient Societies. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-14006-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14006-8_2

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-031-14005-1

  • Online ISBN: 978-3-031-14006-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics