Skip to main content

Paleoneurology of Non-avian Dinosaurs: An Overview

  • Chapter
  • First Online:

Abstract

This chapter aims to provide an overview of the state of knowledge on non-avian dinosaur paleoneurology, throughout the history and synthesis of recent advances in the field. Today, the endocranial morphology of approximately 150 dinosaur taxa has been described using natural or artificial cranial endocasts. They represent all major clades, although there is a bias towards Cretaceous -and more derived- forms. From this sample more than a half of the publications were made in the last 20 years, hand in hand with the use of non-invasive technologies. This larger amount of anatomical data opened the door to more comprehensive analyses (quantitative methods), allowing us to better understand the evolution of the dinosaur brain pattern and sense biology through deep time.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   139.09
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   186.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   186.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnolín FL, Cerroni MA, Scanferla A et al (2022) First definitive abelisaurid theropod from the Late Cretaceous of Northwestern Argentina. J Vertbr Paleontol 41:e2002348

    Google Scholar 

  • Ali F, Zelenitsky D, Therrien F et al (2008) Homology of the “ethmoid complex” of tyrannosaurids and its implications for the reconstruction of the olfactory apparatus of non-avian theropods. J Vertebr Paleontol 28:123–133

    Article  Google Scholar 

  • Alifanov VR, Barsbold R (2009) Ceratonykus oculatus gen. et sp. nov., a new dinosaur (?Theropoda, Alvarezsauria) from the Late Cretaceous of Mongolia. Paleontol J 43:94–106

    Article  Google Scholar 

  • Alifanov VR, Saveliev V (2011) Brain structure and neurobiology of alvarezsaurians (Dinosauria), exemplified by Ceratonykus oculatus (Parvicursoridae) from the Late Cretaceous of Mongolia. Paleontol J 45:183–190

    Article  Google Scholar 

  • Alifanov VR, Saveliev V (2019) The brain morphology and neurobiology in armored dinosaur Bissektipelta archibaldi (Ankylosauridae) from the Late Cretaceous of Uzbekistan. Paleontol J 53:315–321

    Article  Google Scholar 

  • Allemand RR, Boistel G, Daghfous Z et al (2017) Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals. J Anat 231:849–868

    Google Scholar 

  • Andrews CW (1897) Note on a cast of the brain-cavity of Iguanodon. Ann Mag Nat Hist (ser. 6) 19:585–591

    Article  Google Scholar 

  • Andrzejewski KA, Polcyn MJ, Winkler DA et al (2019) The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): a 3D reconstruction of the brain endocast and inner ear. PLoS One 14:e0211423. https://doi.org/10.1371/journal.pone.0211423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aranciaga Rolando M, Cerroni MA, Garcia Marsà JA et al (2020) A new medium-sized abelisaurid (Theropoda, Dinosauria) from the late cretaceous (Maastrichtian) Allen Formation of Northern Patagonia, Argentina. J S Am Earth Sci 102915. https://doi.org/10.1016/j.jsames.2020.102915

  • Arbour VM, Currie PJ (2016) Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs. J Syst Palaeontol 14:385–444

    Google Scholar 

  • Armitage MH (2021) First report of peripheral nerves in bone from Triceratops horridus occipital condyle. MTO 29(2):20–25

    Google Scholar 

  • Atterholt J, Wedel MJ (2019) Neural canal ridges: A novel osteological correlate of post-cranial neurology in dinosaurs. Peer J Preprints 7:e27967v1. https://doi.org/10.7287/peerj.preprints.27967v1

    Article  Google Scholar 

  • Azuma Y, Xu X, Shibata M et al (2016) A bizarre theropod from the Early Cretaceous of Japan highlighting mosaic evolution among coelurosaurians. Sci Rep 6:20478. https://doi.org/10.1038/srep20478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Báez AM, Púgener A (2003) Ontogeny of a new Palaeogene pipid frog from southern South America and xenopodinomorph evolution. Zool J Linn Soc 139:439–476

    Google Scholar 

  • Balanoff AM, Bever GS (2017) The role of endocast in the study of brain evolution. In: Kaas JH (ed) Evolution of nervous systems, vol 1. Elsevier, Amsterdan, pp 223–241

    Chapter  Google Scholar 

  • Balanoff AM, Bever GS (2020) The role of endocasts in the study of brain evolution. In: Kaas J (ed) Evolutionary neuroscience. Elsevier, pp 29–49

    Google Scholar 

  • Ballell A, King JL, Neenan JM et al (2021) The braincase, brain and palaeobiology of the basal sauropodomorph dinosaurThecodontosaurus antiquus. Zool J Linn Soc 193:541–562

    Google Scholar 

  • Balanoff AM, Bever GS, Ikejiri T (2010) The braincase of Apatosaurus (Dinosauria, Sauropoda) based on Computed Tomography of a new specimen with comments on variations and evolution in sauropod neuroanatomy. Am Nov 3677:1–29

    Article  Google Scholar 

  • Balanoff AM, Bever GS, Rowe TB et al (2013) Evolutionary origins of the avian brain. Nature 501(7465):93–96

    Article  PubMed  CAS  Google Scholar 

  • Balanoff AM, Bever GS, Norell MA (2014) Reconsidering the avian nature of the oviraptosaur brain (Dinosauria: Theropoda). PoS One 9(12):e113559. https://doi.org/10.1371/journal.pone.0113559

    Article  CAS  Google Scholar 

  • Balanoff AM, Norell M (2012) Osteology of Khaan mckennai (Oviraptorosauria: Theropoda). Bull Am Mus Nat Hist 372:1–77

    Google Scholar 

  • Balanoff AM, Smaers JB, Turner AH (2016a) Brain modularity across the theropod-bird transition: testing the influence of flight on neuroanatomical variation. J Anat 229(2):204–214

    Article  PubMed  Google Scholar 

  • Balanoff AM, Bever GS, Colbert MW et al (2016b) Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. J Anat 229:173–190

    Article  PubMed  Google Scholar 

  • Balanoff A, Norell MA, Hogan A et al (2018) The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain. Brain Behav Evol 91(3):125–135

    Article  PubMed  Google Scholar 

  • Ballell A, King JL, Neenan JM et al (2021) The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus. Zool J Linn Soc 193(2):541–562

    Article  Google Scholar 

  • Baron MG (2019) Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution? Hist Biol 31:967–981

    Article  Google Scholar 

  • Baron MG, Norman DB, Barrett PM (2017) A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543:501–506

    Article  PubMed  CAS  Google Scholar 

  • Barker CT, Naish D, Newham E et al (2017) Complex neuroanatomy in the rostrum of the Isle of Wight theropod Neovenator salerii. Sci Rep 7:3749. https://doi.org/10.1038/s41598-017-03671-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrett PM, Upchurch P (2007) The evolution of feeding mechanisms in early sauropodomorph dinosaurs. In: PM Barrett, DJ Batten (eds), Evolution and palaeobiology of early sauropodomorph dinosaurs. Special Pap Palaeontol 77:91–112

    Google Scholar 

  • Baumel E, Witmer LM (1993) Osteology. In: Baumel E, King A, Breazile JE, Evans H, Vanden Bergue JC (eds) Handbook of Avian anatomy: Nomina Anatomica Avium. Cambridge University Press, pp 45–132

    Google Scholar 

  • Becerra MG, Paulina-Carabajal A, Cruzado-Caballero P et al (2018) First endocranial description of a South American hadrosaurid: The neuroanatomy of Secernosaurus koerneri from the Late Cretaceous of Argentina. Acta Palaeontol Pol 63(4):693–702

    Google Scholar 

  • Benson RBJ, Campione NE, Carrano MT et al (2014) Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol 12(5):1001853. https://doi.org/10.1371/journal.pbio.1001853

    Article  CAS  Google Scholar 

  • Benson RB, Hunt G, Carrano M et al (2017) Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61:13–48

    Google Scholar 

  • Benson RBJ, Hunt G, Carrano MT et al (2018) Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61(1):13–48

    Article  Google Scholar 

  • Benton M (1979) Ectothermy and the success of dinosaurs. Evol 33(3):983–997

    Article  Google Scholar 

  • Benton (2004) Origin and relationships of Dinosauria. In: D Weishampel (ed), The Dinosauria, University of California Press pp 6–19

    Google Scholar 

  • Bever GS, Brusatte SL, Balanoff AM et al (2011) Variation, variability, and the origin of the avian endocranium: insights from the anatomy of Alioramus altai (Theropoda: Tyrannosauroidea). PLoS One 6:e23393. https://doi.org/10.1371/journal.pone.0023393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bever GS, Brusatte SL, Carr TD et al (2013) The braincase anatomy of the Late Cretaceous dinosaur Alioramus (Theropoda: Tyrannosauroidea). Bull Am Mus Nat Hist 376:1–72

    Article  Google Scholar 

  • Beyrand V, Voeten DFA, Bures S et al (2019) Multiphase progenetic development shaped the brain of flying archosaurs. Sci Rep 9:10807. https://doi.org/10.1038/s41598-019-46959-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourke JM, Porter WMR, Ridgely RC et al (2014) Breathing life into dinosaurs: tackling challenges of soft-tissue reconstruction and nasal airflow in extinct species. Anat Rec 297:2148–2186

    Article  Google Scholar 

  • Boyd CA (2015) The systematic relationships and biogeographic history of ornithischian dinosaurs. Peer J 3:e1523. https://doi.org/10.7717/peerj.1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Brasier MD, Norman DB, Liu AG et al (2016) Remarkable preservation of brain tissues in an Early Cretaceous iguanodon dinosaur. Geol Soc Spec Publ 448:383–398

    Article  Google Scholar 

  • Breeden BT III, Raven TJ, Butler RJ et al (2021) The anatomy and palaeobiology of the early armoured dinosaur Scutellosaurus lawleri (Ornithischia: Thyreophora) from the Kayenta Formation (Lower Jurassic) of Arizona. R Soc Open Sci 8(7):201676. https://doi.org/10.1098/rsos.201676

    Article  PubMed  PubMed Central  Google Scholar 

  • Brochu CA (2000) A digitally-rendered endocast for Tyrannosaurus rex. J Vertebr Paleontol 20:1–6

    Article  Google Scholar 

  • Brochu C (2003) Osteology of Tyrannosaurus Rex: insights from a nearly complete skeleton and high-resolution Computed Tomographic analysis of the skull. J Vertebr Paleontol 7:1–138

    Article  Google Scholar 

  • Bronzati M (2017) Should the terms ‘basal taxon’ and ‘transitional taxon’ be extinguished from cladistic studies with extinct organisms? Palaeontologia Electronica 20.2.3E:1–12

    Google Scholar 

  • Bronzati M, Rauhut OWM (2017) Braincase redescription of Efraasia minor Huene, 1908 (Dinosauria: Sauropodomorpha) from the Late Triassic of Germany, with comments on the evolution of the sauropodomorph braincase. Zool J Linn Soc 182:173–224

    Google Scholar 

  • Bronzati M, Rauhut OWM, Bittencourt JS et al (2017) Endocast of the Late Triassic (Carnian) dinosaur Saturnalia tupiniquim: implications for the evolution of brain tissue in Sauropodomorpha. Sci Rep 7:11931. https://doi.org/10.1038/s41598-017-11737-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bronzati M, Benson RB, Rauhut OWM (2018) Rapid transformation in the braincase of sauropod dinosaurs: integrated evolution of the braincase and neck in early sauropods? Palaeontology 61(2):289–302

    Article  Google Scholar 

  • Bronzati M, Lagner M, Rauhut OWM (2019) Braincase anatomy of the early sauropodomorph Saturnaliatupiniquim (Late Triassic, Brazil). J Vertebr Paleontol e1559173

    Google Scholar 

  • Brown DB (1914) Anchiceratops, a new genus of horned dinosaurs from the Edmonton Cretaceous of Alberta; with discussion of the origin of the ceratopsian crest and the brain casts of Anchiceratops and Trachodon. Bull Am Mus Nat Hist 33:539–548

    Google Scholar 

  • Brown B, Schlaikjer EM (1940) The structure and relationships of Protoceratops. Ann N Y Acad Sci 40:133–266

    Article  Google Scholar 

  • Brown B, Schlaikjer EM (1943) A study of the toodontid dinosaurs with the description of a new genus and four new species. Bull Am Mus Natl Hist 82(5):115–150

    Google Scholar 

  • Bruce LL (2006) Evolution of the nervous system in reptiles. In: Kaas JH (ed) Evolution of nervous systems, The evolution of nervous systems in non-mammalian vertebrates, vol II. Elsevier, Amsterdam, pp 125–156

    Google Scholar 

  • Bruce L (2009) Evolution of the brain in reptiles. In: Binder, Hiokawa, Windhorst (eds) Encyclopedia of Neuroscience, Springer, Berlin, pp 1295-1301

    Google Scholar 

  • Brusatte SL (2012) Dinosaur paleobiology. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Brusatte SL, Chure DJ, Benson RBJ et al (2010a) The osteology of Shaochilong maortuensis, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Asia. Zootaxa 2334:1–46

    Article  Google Scholar 

  • Brusatte SL, Nesbitt SJ, Irmis RB et al (2010b) The origin and early radiation of dinosaurs. Earth-Sci Rev 101:68–100

    Article  Google Scholar 

  • Brusatte SL, Averianov A, Sues H-D et al (2016) New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs. PNAS 113:3447–3452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchholtz E (1997) Paleoneurology. In: Currie PJ, Padian K (eds) Encyclopedia of dinosaurs. Academic Press, San Diego, pp 522–524

    Google Scholar 

  • Buchholtz E (2012) Dinosaur paleoneurology. In: Brett-Surman MK, Holtz TR Jr, Farlow JO (eds) The complete dinosaur. Indiana University Press, Bloomington, pp 191–208

    Google Scholar 

  • Buchholtz E, Seyfarth E-A (2001) The study of “Fossil Brains”: Tilly Edinger (1897–1967) and the beginnings of Paleoneurology. BioScience 51:674–682

    Article  Google Scholar 

  • Bullar CM, Zhao Q, Benton MJ et al (2019) Ontogenetic braincase development in Psittacosaurus lujiatunensis (Dinosauria: Ceratopsia) using micro-computed tomography. Peer J 7:e7217. https://doi.org/10.7717/peerj.7217

    Article  PubMed  PubMed Central  Google Scholar 

  • Burch SH, Paulina-Carabajal A, O’Connor P et al (in press). Dinosaur soft tissues. In: Weishampel D, Barret P, Carrano M, Mackoviky P (eds), The dinosauria, 3rd edn. Cambridge University Press, Berkeley

    Google Scholar 

  • Bürckhardt R (1892) Das Gehirne von Triceratops flabellatus Marsh. Neues Jahrb Min Geol Paläontol 1892(Bd.2):71–72. [in German]

    Google Scholar 

  • Burnham DA (2004) New information on Bambiraptor feinbergi (Theropoda: Dromaeosauridae) from the Late Cretaceous of Montana. In: Currie PJ, Koppelhus E, Shugar MA, Wright J (eds) The feathered dragons. Indiana University Press, Bloomington, pp 67–111

    Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, New York

    Book  Google Scholar 

  • Butler RJ, Upchurch P, Norman DB (2008) The phylogeny of the ornithischian dinosaurs. J Syst Palaeontol 6:1–40

    Article  Google Scholar 

  • Cabreira SF, Kellner AWA, Dias-da-Silva S et al (2016) A unique Late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Curr Biol 26:3090–3095

    Article  PubMed  CAS  Google Scholar 

  • Campione NE, Evans DC (2020) The accuracy and precision of body mass estimation in non-avian dinosaurs. Biol Rev 95:1759–1797

    Google Scholar 

  • Carballido JL, Pol D, Otero A et al (2017) A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc R Soc B 284:20171219

    Google Scholar 

  • Carpenter K, Kirkland JI, Birge D et al (2001) Disarticulated skull of a new primitive ankylosaurid from the Lower Cretaceous of Utah. In: Carpenter K (ed) The armored dinosaurs. Indiana University Press, pp 211–238

    Google Scholar 

  • Carr TD, Varricchio DJ, Sedlmayr JC et al (2017) A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Sci Rep 7:44942. https://doi.org/10.1038/srep44942

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrano MT, Benson RBJ, Sampson SD (2012) The phylogeny of Tetanurae (Dinosauria: Theropoda). J Syst Palaeontol 10(2):211–300

    Article  Google Scholar 

  • Cerda I, Paulina-Carabajal A, Salgado L et al (2011) The first record of a sauropod dinosaur from Antarctica. Naturwissenschaften 99(1):83–87

    Article  PubMed  Google Scholar 

  • Cerroni MA, Paulina-Carabajal A (2019) Novel information on the endocranial morphology of the abelisaurid theropod Carnotaurus sastrei. C R Palevol 18(8):985–995

    Article  Google Scholar 

  • Chapelle KEJ, Choiniere JN (2018) A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha. Peer J 6:e4224. https://doi.org/10.7717/peerj.4224

    Article  PubMed  PubMed Central  Google Scholar 

  • Charig AJ, Milner AC (1997) Baryonyx walkeri, a fish eating dinosaur from the Wealden of Surrey. Bull Nat Hist Mus 53:11–70

    Google Scholar 

  • Chatterjee S, Zheng Z (2002) Cranial anatomy of Shunosaurus, a basal sauropod dinosaur from the Middle Jurassic of China. Zool J Linn Soc-Lond 136:145–169

    Article  Google Scholar 

  • Chatterjee S, Zheng Z (2005) Neuroanatomy and dentition of Camarasaurus lentus. In: Tidwell V, Carpenter K (eds) Thunder-lizards: the sauropodomorph dinosaurs. Indiana University Press, Bloomington, pp 199–211

    Google Scholar 

  • Choiniere JN, Neenan JM, Schmitz L et al (2021) Evolution of vision and hearing modalities in theropod dinosaurs. Science 232(6542):610–613

    Article  Google Scholar 

  • Christiansen P, Fariña RA (2004) Mass Prediction in Theropod Dinosaurs. Hist Biol 16:85–92

    Google Scholar 

  • Clarke AH (2005) On the vestibular labyrinth of Brachiosaurs brancai. J Vestib Res 15:65–71

    Article  PubMed  CAS  Google Scholar 

  • Coombs WP (1978) An endocranial cast of Euoplocephalus (Reptilia, Ornithischia). Palaeontogr Abt A 161:176–182

    Google Scholar 

  • Coria RA, Currie PJ (2002) The braincase of Giganotosaurus carolinii (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina. J Vertebr Paleontol 22:802–811

    Google Scholar 

  • Crompton AW, Charig AJ (1962) A new ornithischian from the Upper Triassic of South Africa. Nature 196:1074–1077

    Article  Google Scholar 

  • Cruzado-Caballero P, Fortuny J, Lácer S et al (2015) Paleoneuroanatomy of the European lambeosaurine dinosaur Arenysaurus ardevoli. Peer J 3:e802. https://doi.org/10.7717/peerj.802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Currie PJ, Zhao X-J (1993) A new troodontid (Dinosauria, Theropoda) braincase from the Dinosaur Park Formation (Campanian) of Alberta. Can J Earth Sci 30:2231–2247

    Article  Google Scholar 

  • Davidson RG, Trewin NH (2005) Unusual preservation of the internal organs of acanthodian and actinopterygian fish in the Middle Devonian of Scotland. Scot J Geo 41:129–134

    Article  Google Scholar 

  • Dendy A (1910) On the structure, development, and morphological interpretation of the pineal organs and adjacent parts of the brain in the tuatara (Sphenudon punctatus). Proc R Soc B 82:629–637

    Google Scholar 

  • Desojo JB, Fiorelli LE, Ezcurra MD et al (2020) The Late Triassic Ischigualasto Formation at Cerro Las Lajas (La Rioja, Argentina): fossil tetrapods, high-resolution chronostratigraphy, and faunal correlations. Sci Rep 10:12782. https://doi.org/10.1038/s41598-020-67854-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dieudonné PE, Cruzado-Caballero P, Godefroit P (2020) A new phylogeny of Cerapodan dinosaurs. Hist Biol 33(10):2335–2355

    Article  Google Scholar 

  • Dumoncel J, Subsol G, Durrleman S et al (2020) Are endocasts reliable proxies for brains? A 3D quantitative comparison of the extant human brain and endocast. J Anat 238:480–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Early CM, Iwaniuk AN, Ridgely RC et al (2020) Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds. J Anat 237:1162–1176

    Article  PubMed  Google Scholar 

  • Eaton TH (1960) A new armored dinosaur from the Cretaceous of Kansas, University of Kansas Paleontological Contributions 25. University of Kansas Press, Lawrence, pp 1–24

    Google Scholar 

  • Ebner R, Salgado L (2003) Computed tomographic scan of a dinosaur’s skull: the optic canal. Arch Ophthalmol 121:294–295

    Article  PubMed  Google Scholar 

  • Edinger T (1929) Die fossilen Gehirne. Ergebnisse der Anatomische Entwicklungsgeschichte, 28:1–249

    Google Scholar 

  • Edinger T (1942) The pituitary body in giant animals fossil and living: a survey and a suggestion. Q Rev Biol 17:31–45

    Article  Google Scholar 

  • Edinger T (1951) The brains of the Odontognathae. Evolution 5:6–24

    Article  Google Scholar 

  • Edinger T (1975) Paleoneurology 1804-1966: an annotated bibliography. Ad Anat Embryol Cell Biol 49:1–6

    Google Scholar 

  • Evans DC (2005) New evidence on brain–endocranial cavity relationships in ornithischian dinosaurs. Acta Palaeontol Pol 50:617–622

    Google Scholar 

  • Evans DC (2006) Nasal cavity homologies and cranial crest function in lambeosaurine dinosaurs. Paleobiology 32:109–125

    Google Scholar 

  • Evans DC, Ridgely R, Witmer LM (2009) Endocranial anatomy of lambeosaurine hadrosaurids (Dinosauria: Ornithischia): a sensorineural perspective on cranial crest function. Anat Rec 292(9):1315–1337

    Article  Google Scholar 

  • Ezcurra MD (2010) A new early dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Argentina: a reassessment of dinosaur origin and phylogeny. J Syst Palaeontol 8:371–425

    Article  Google Scholar 

  • Ezcurra MD, Cuny G (2007) The coelophysoid Lophostropheus airelensis, gen. nov.: A review of the systematics of “Liliensternus” airelensis from the Triassic-Jurassic outcrops of Normandy (France). J Vertebr Paleontol 27(1):73–86

    Article  Google Scholar 

  • Fabbri M, Koch NM, Pritchard A et al (2017) The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat Ecol Evol 1:1543–1550

    Article  PubMed  Google Scholar 

  • Fabbri M, Tschopp B, McPhee S et al (2020) Sauropodomorpha. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a Companion to the PhyloCode. CRC Press, Boca Raton, pp 1225–1234

    Google Scholar 

  • Farke AA, Chok DJ, Herrero A et al (2013) Ontogeny in the tube-crested dinosaur Parasaurolophus (Hadrosauridae) and heterochrony in hadrosaurids. Peer J 1:e182. https://doi.org/10.7717/peerj.182

    Article  PubMed  PubMed Central  Google Scholar 

  • Fastovsky DE, Weishampel DB (2016) Dinosaurs: a concise natural history. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ferreira-Cardozo S, Aráujo R, Martins NE et al (2017) Floccular fossa size not a reliable proxy of ecology and behavior in vertebrates. Sci Rep 7(1):1–11

    Google Scholar 

  • Forster CA (1996) New information on the skull of Triceratops. J Vertebr Paleontol 16:246–258

    Article  Google Scholar 

  • Franzosa JW (2004) Evolution of the brain in Theropoda (Dinosauria). Dissertation, University of Texas

    Google Scholar 

  • Franzosa J, Rowe T (2005) Cranial endocast of the Cretaceous theropod dinosaur Acrocanthosaurus atokensis. J Vertebr Paleontol 25:859–864

    Article  Google Scholar 

  • Galton PM (1985) Cranial anatomy of the prosauropod dinosaur Plateosaurus from the Knollenmergel (Middle Keuper, Upper Triassic) of Germany. Geol Palaeontol 19:119–159

    Google Scholar 

  • Galton PM (1988) Skull bones and endocranial casts of stegosaurian dinosaur Kentrosaurus Hennig, 1915 from Upper Jurassic of Tanzania, East Africa. Geol Palaeontol 22:123–143

    Google Scholar 

  • Galton PM (1989) Crania and endocranial casts from ornithopod dinosaurs of the families Dryosauridae and Hypsilophodontidae (Reptilia: Ornithischia). Geol Palaeontol 23:217–239

    Google Scholar 

  • Galton PM (2001) Endocranial casts of the plated dinosaur Stegosaurus (Upper Jurassic, western USA): a complete undistorted cast and the original specimens of Othniel Charles Marsh. In: Carpenter K (ed) The armored dinosaurs. Indiana University Press, Bloomington, pp 103–129

    Google Scholar 

  • Galton PM, Knoll F (2006) A saurischian dinosaur braincase from the Middle Jurassic (Bathonian) near Oxford, England: from the theropod Megalosaurus or the sauropod Cetiosaurus? Geol Mag 43:905–921. https://doi.org/10.1017/S0016756806002561

    Article  Google Scholar 

  • Galton PM, Upchurch P (2004) Stegosauria. In: Weishampel DB, Dodson P, Olmólska H (eds) The dinosauria, 2nd edn. University of California Press, Berkeley, pp 343–362

    Chapter  Google Scholar 

  • García R, Paulina-Carabajal A, Salgado L (2008) Un nuevo basicráneo de titanosaurio de la Formación Allen (Campaniano-Maastrichtiano), Provincia de Río Negro, Patagonia, Argentina. Geobios 41:625–633

    Google Scholar 

  • García RA, Salgado L, Fernández MS et al (2015) Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record. Ameghiniana 52:29–68

    Article  Google Scholar 

  • Gauthier JA, Langer MC, Novas FE et al (2020) Saurischia H. G. Seeley. In: de Queirok K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 1219–1224

    Google Scholar 

  • George I, Holliday CM (2013) Trigeminal nerve morphology in Alligator mississippiensis and its significance for crocodyliform facial sensation and evolution. Anat Rec 296(4):670–680

    Article  Google Scholar 

  • Gianechini FA, Méndez AH, Filippi LS et al (2021) A new furilesaurian abelisaurid from La Invernada (Upper Cretaceous, Santonian, Bajo de la Carpa Formation), northern Patagonia, Argentina. J Vert Paleontol 40(6):e1877151. https://doi.org/10.1080/02724634.2020.1877151

    Article  Google Scholar 

  • Giffin EB (1989) Pachycephalosaur paleoneurology (Archosauria: Ornithischia). J Vertebr Paleonto 9(1):67–77

    Article  Google Scholar 

  • Giffin EB (1990) Gross spinal anatomy and limb use in living and fossil reptiles. Paleobiology 16(4):448–458

    Article  Google Scholar 

  • Giffin EB, Gabriel D, Johnson R (1987) A new pachycephalosaurid skull from the Cretaceous Hell Creek Formation of Montana. J Vertebr Paleontol 7:398–407

    Article  Google Scholar 

  • Gilmore CW (1914) Osteology of the armored Dinosauria in the United States National Museum, with special reference to the genus Stegosaurus. Bull US Natl Mus, Smithsonian Institution, 89

    Google Scholar 

  • Godefroit P, Escuillié F, Bolotsky YL et al (2012) A new basal hadrosauroid dinosaur from the Upper Cretaceous of Kazakhstan. In: Godefroit P (ed) Bernissart dinosaurs and early cretaceous terrestrial ecosystems. Indiana University Press, Bloomington, pp 336–358

    Google Scholar 

  • Gower DJ, Weber E (1998) The braincase of Euparkeria, and the evolutionary relationships of birds and crocodilians. Biol Rev 73:367–411

    Article  Google Scholar 

  • Griebeler EM, Werner J (2011) The life cycle of sauropod dinosaurs. In: Gans C, Glenn Northcutt R, Ulinski P (eds) Biology of the reptilia. Academic, London, pp 39–146

    Google Scholar 

  • Güntürkün O, Stacho M, Strökens F (2020) The brains of reptiles and birds. In: Kaas JH (ed) Evolutionary neuroscience. Elsevier, pp 159–212

    Chapter  Google Scholar 

  • Hammer WR, Hickerson WJ (1994) A crested theropod dinosaur from Antarctica. Science 264(5160):828–830

    Article  PubMed  CAS  Google Scholar 

  • Harris JD (2006) Cranial osteology of Suuwassea emiliae (Sauropoda: Diplodocoidea: Flagellicaudata) from the Upper Jurassic Morrison Formation of Montana, USA. J Vertebr Paleontol 26:88–102

    Google Scholar 

  • Hawakaya H, Manabe M, Carpenter K (2005) Nodosaurid ankylosaur from the Cenomanian of Japan. J Vert Paleontol 25:240–245

    Article  Google Scholar 

  • Hay OP (1909) On the skull and the brain of Triceratops with notes on the brain-cases of Iguanodon and Megalosaurus. Proc U S Natl Mus 36:95–108

    Article  Google Scholar 

  • Hennig E (1925) Kentrosaurus aethiopicus, die Stegosaurier-Funde von Tendaguru, Deutsch-Ostafrika. Palaeontogr Suppl. 7:101–254

    Google Scholar 

  • Holtz T Jr (2018) Evolution: new branches on the alvarezsaur tree. Curr Biol 28(17):R941-R943 4

    Article  Google Scholar 

  • Hopson JA (1977) Relative brain size and behavior in archosaurian reptiles. Ann Rev Ecol Syst 8:429–448

    Article  Google Scholar 

  • Hopson JA (1979) Paleoneurology. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the reptilia. Academic, London, pp 39–146

    Google Scholar 

  • Hopson JA (1980) Relative brain size in dinosaurs. Implications for dinosaurian endothermy. In: Thomas RDK, Olson EC (eds) A cold look at the warm-blooded dinosaurs. Westview Press, Boulder, pp 287–310

    Google Scholar 

  • Horner JR, Weishampel DB, Forster CA (2004) Hadrosauridae. In: Weishampel DB, Dodson P, Osmólska H (eds) The dinosauria, 2nd edn. University of California Press, Berkeley, pp 438–463

    Chapter  Google Scholar 

  • Hu K, King JL, Romick CA et al (2021) Ontogenetic endocranial shape change in alligators and ostriches and implications for the development of the non-avian dinosaur endocranium. Anat Rec 304:1759–1775

    Article  Google Scholar 

  • Hulke JW (1871) Note on a large reptilian skull from Brooke, Isle of Wight, probably dinosaurian, and referable to the genus Iguanodon. Quart J Geol Soc 27:199–206

    Article  Google Scholar 

  • Hurlburt GR (1996) Relative brain size in recent and fossil amniotes: determination and interpretation. Dissertation, University of Toronto

    Google Scholar 

  • Hurlburt GR, Ridgely RC, Witmer LM (2013) Relative size of brain and cerebrum in tyrannosaurid dinosaurs: an analysis using brain-endocast quantitative relationships in extant alligators. In: Parrish JM, Molnar E, Currie PJ et al (eds) Tyrannosaurid paleobiology. Indiana University Press, Bloomington, pp 134–154

    Google Scholar 

  • Huxley TH (1870) On the classification of the Dinosauria with observations on the Dinosauria of the Trias. Quart J Geol Soc Lon 26:32–51

    Article  Google Scholar 

  • Ibrahim N, Sereno PC, Dal Sasso C et al (2014) Semiaquatic adaptations in a giant predatory dinosaur. Science 345(6204):1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Iwaniuk AN, Nelson J (2002) Can endocranial volume be used as an estimate of brain size in birds? Can J Zool 80:16–23

    Article  Google Scholar 

  • Janensch W (1935–1936) Die Schädel der Sauropoden Brachiosaurus, Barosaurus und Dicraeosaurus aus den Tendaguru-Schichten Deutsch-Ostafrikas. Palaeontogr Suppl 7:147–298

    Google Scholar 

  • Janensch W (1939) Der sakrale Neuralkanal einiger Sauropodenund anderer Dinosaurier. Palaontol Z 21:171–193

    Google Scholar 

  • Jerison HJ (1969) Brain evolution and dinosaur brains. Am Nat 103:575–588

    Article  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jerison HJ (2004) Dinosaur brains. In: Adelman G, Smith BH (eds) Encyclopedia of neuroscience, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Jirak D, Janacek J (2017) Volume of the crocodilian brain and endocast during ontogeny. PLoS One 12(6):e0178491. https://doi.org/10.1371/journal.pone.0178491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawabe S, Hattori S (2021) Complex neurovascular system in the dentary of Tyrannosaurus. Hist Biol. https://doi.org/10.1080/08912963.2021.1965137

  • King L (2021) Macroevolutionary and Ontogenetic Trends in the Anatomy and Morphology of the Non-Avian Dinosaur Endocranium. Dissertation, University of Bristol

    Google Scholar 

  • King L, Sipla JS, Georgi JA et al (2020) The endocranium and trophic ecology of Velociraptor mongoliensis. J Anat 237(5):861–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoll F (1997) La Boîte crânienne d’un Théropode (Saurischia) du Jurassique des Vaches Noires: Ostéologie et Paléoneurologie. Dissertation, Université des Sciences et Techniques du Languedoc

    Google Scholar 

  • Knoll F, Kawabe S (2020) Avian palaeoneurology: reflections on the eve of its 200th anniversary. J Anat 236(6):965–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoll F, Lautenschlager S, Valentin X et al (2019) First palaeoneurological study of a sauropod dinosaur from France and its phylogenetic significance. Peer J 7:e7991. https://doi.org/10.7717/peerj.7991

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoll F, Lautenschlager S, Kawabe S et al (2021) Palaeoneurology of the early cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs. J Comp Neurol 529:3922–3945

    Google Scholar 

  • Knoll F, Schwarz-Wings D (2009) Paleoneuroanatomy of Brachiosaurus. Ann de Paléontol 95:165–175

    Article  Google Scholar 

  • Knoll F, Buffetaut E, Bulow M (1999) A theropod braincase from the Jurassic of the Vaches Noires cliffs (Normandy, France): osteology and Paleoneurology. BSGF-Earth SCI B170:103–109

    Google Scholar 

  • Knoll F, Galton PM, Lopez-Antoñanzas R (2006) Paleoneurological evidence against a proboscis in the sauropod dinosaur Diplodocus. Geobios 39:215–221

    Article  Google Scholar 

  • Knoll F, Witmer LM, Ortega F et al (2012) The braincase of the basal sauropod dinosaur Spinophorosaurus and 3D reconstructions of the cranial endocast and inner ear. PLoS One 7(1):e30060. https://doi.org/10.1371/journal.pone.0030060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoll F, Ridgely RC, Ortega F et al (2013) Neurocranial osteology and neuroanatomy of a Late Cretaceous titanosaurian sauropod from Spain (Ampelosaurus sp.). PLoS One 8:e54991. https://doi.org/10.1371/journal.pone.0054991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoll F, Ridgely RC, Witmer LM (2015a) Comparative paleoneurology of the basal dicraeosaurid sauropod Suuwassea emilieae. J Vertebr Paleontol (supp):156

    Google Scholar 

  • Knoll F, Witmer LM, Ridgely RC et al (2015b) A new titanosaurian braincase from the Cretaceous “Lo Hueco” locality in Spain sheds light on neuroanatomical evolution within Titanosauria. PLoS One 10:e0138233. https://doi.org/10.1371/journal.pone.0138233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ksepka DT, Balanoff AM, Smith A et al (2020) Tempo and pattern of avian brain size evolution. Current Biol 30:2026–2036.e3

    Google Scholar 

  • Kundrát M (2007) Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis. Naturwissenschaften 94:499–504

    Article  PubMed  Google Scholar 

  • Kundrát M, Xu X, Hančová M et al (2018) Evolutionary disparity in the endoneurocranial configuration between small and gigantic tyrannosauroids. Hist Biol 32:620–634

    Article  Google Scholar 

  • Kurzanov SM (1976) Braincase structure in the carnosaur Itemirus n. gen. and some aspects of the cranial anatomy of dinosaurs. Paleontol J 10:361–369

    Google Scholar 

  • Kurzanov SM, Tumanova TA (1978) Endo-cranium structure of some mongolian ankylosaurs. Paleontol J 3:90–96

    Google Scholar 

  • Kuzmin I, Petrov I, Averianov A et al (2020) The braincase of Bissektipelta archibaldi—new insights into endocranial osteology, vasculature, and paleoneurobiology of ankylosaurian dinosaurs. Biol Comm 65(2):85–156

    Article  Google Scholar 

  • Lambe LM (1918) The Cretaceous genus Stegoceras typifying a new family referred provisionally to the Stegosauria. Trans Roy Soc Canada, Ser 3(12):23–36

    Google Scholar 

  • Lambe LM (1920) The hadrosaur Edmontosaurus from the Upper Cretaceous of Alberta, Canada Department of Mines. (Geological Survey of Canada) Memoir 120. T. Mulvey, Ottawa, pp 1–79

    Book  Google Scholar 

  • Langer MC (2014) The origins of Dinosauria: much ado about nothing. Palaeontology 57:469–478

    Article  Google Scholar 

  • Langer MC, Ezcurra MD, Bittencourt JS et al (2010) The origin and early evolution of dinosaurs. Biol Rev 85(1):5–110

    Article  Google Scholar 

  • Langer MC, Ezcurra MD, Rauhut OWM et al (2017) Untangling the dinosaur family tree. Nature 551(7678):E1–E3. https://doi.org/10.1038/nature24011

    Article  PubMed  Google Scholar 

  • Langer MC, Novas FE, Bittencourt JS et al (2020) Dinosauria R. Owen. In: de Queirok K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 1209–1218

    Google Scholar 

  • Langston WL Jr (1960) The vertebrate fauna of the Selma Formation of Alabama. Part 6: the dinosaurs. Fieldiana, Geol Mem 3:313–363

    Google Scholar 

  • Langston WL Jr (1975) The ceratopsian dinosaurs and associated lower vertebrates from the St. Mary River Formation (Maestrichtian) at Scabby Butte, southern Alberta. Can J Earth Sci 12:1576–1608

    Article  Google Scholar 

  • Larsson HCE (2001) Endocranial anatomy of Carcharodontosaurus saharicus (Theropoda: Allosauroidea) and its implications for theropod brain evolution. In: Tanke DH, Carpenter K (eds) Mesozoic vertebrate life. Indiana University Press, Bloomington, pp 19–33

    Google Scholar 

  • Larsson HCE, Sereno PC, Wilson JA (2000) Forebrain enlargement among nonavian dinosaurs. J Vertebr Paleontol 20:615–618

    Article  Google Scholar 

  • Lautenschlager S (2014) Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution. Proc Biol Dci 22(1785):281. https://doi.org/10.1098/rspb.2014.0497

    Article  Google Scholar 

  • Lautenschlager S, Hübner T (2013) Ontogenetic trajectories in the ornithischian endocranium. J Evol Biol 26(9):2044–2050

    Article  PubMed  CAS  Google Scholar 

  • Lautenschlager S, Rayfield EJ, Altangerel P et al (2012) The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS One 7:e52289. https://doi.org/10.1371/journal.pone.0052289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauters P, Coudyzer W, Vercauteren M (2012) The brain of Iguanodon and Mantellisaurus: perspectives on ornithopod evolution. In: Godefroit P (ed) Bernissart dinosaurs and early cretaceous terrestrial ecosystems. Indiana University Press, Bloomington, pp 213–224

    Google Scholar 

  • Lauters P, Vercauteren M, Bolotsky YL et al (2013) Cranial endocast of the lambeosaurine hadrosaurid Amurosaurus riabinini from the Amur Region, Russia. PLoS One 8(11):e78899. https://doi.org/10.1371/journal.pone.0078899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leahey LG, Molnar RE, Carpenter K et al (2015) Cranial osteology of the ankylosaurian dinosaur formerly known as Minmi sp. (Ornithischia: Thyreophora) from the Lower Cretaceous Allaru Mudstone of Richmond, Queensland, Australia. Peer J 3:e1475. https://doi.org/10.7717/peerj.1475

    Article  PubMed  PubMed Central  Google Scholar 

  • Lull RS (1917) On the functions of the “Sacral Brain” in dinosaurs. Amerc J of Sci 4(44):471–477

    Article  Google Scholar 

  • Lull RS (1933) A revision of the Ceratopsia or horned dinosaurs. Mem Peabody Mus Nat Hist 3:1–175

    Google Scholar 

  • Lull RS, Wright NE (1942) Hadrosaurian dinosaurs of North America. Special Paper. Geol Soc Ame 40:1–242

    Google Scholar 

  • Macri S, Savriama Y, Khan I, Di-Poï N (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Comm 10:5560. https://doi.org/10.1038/s41467-019-13405-w

    Article  CAS  Google Scholar 

  • Madzia D, Arbour VM, Boyd CA et al (2021) The phylogenetic nomenclature of ornithischian dinosaurs. Peer J 9:e12362. https://doi.org/10.7717/peerj.12362

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleev EA 1965. [On the brain of carnivorous dinosaurs.] Paleontologeskii Zhurnal, 2:141–143

    Google Scholar 

  • Marsh OC (1880) Principal characters of American Jurassic dinosaurs. Part III. Am J Sci 19:253–259

    Article  Google Scholar 

  • Marsh OC (1881) Principal characters of American Jurassic dinosaurs. Part IV. Am J Sci 122:167–170

    Article  Google Scholar 

  • Marsh OC (1884a) Principal characters of American Jurassic dinosaurs. Part VII. On the Diplodocidae, a new family of the Sauropoda. Am J Sci 27:161–168

    Google Scholar 

  • Marsh OC (1884b) Principal characters of American Jurassic dinosaurs. Part VIII. The order Theropoda. Am J Sci 27:329–340

    Article  Google Scholar 

  • Marsh OC (1889) The skull of the gigantic Ceratopsidae. Am J Sci 228:501–506

    Article  Google Scholar 

  • Marsh OC (1890) Additional characters of the Ceratopsidae, with notice of the new Cretaceous dinosaurs. Am J Sci 39:418–426

    Article  Google Scholar 

  • Marsh OC (1891) The gigantic Ceratopsidae, or horned Dinosaurs, of North America. Am J Sci 41:168–178

    Google Scholar 

  • Marsh OC (1893) The skull and brain of Claosaurus. Am J Sci 3(265):83–86

    Article  Google Scholar 

  • Marsh OC (1894) The typical Ornithopoda of the American Jurassic. Am J Sci 48:85–90

    Article  Google Scholar 

  • Marsh OC (1896) The dinosaurs of North America. United States Geological Survey, sixteenth annual report, 1894–95:133–244

    Google Scholar 

  • Martínez RD, Lamanna MC, Novas FE et al (2016) A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: implications for the evolution and paleobiology of Titanosauria. PloS One 11(4):e0151661. https://doi.org/10.1371/journal.pone.0151661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maryanska T, Osmólska H (1974) Pachycephalosauria, a new suborder of ornithischian dinsoaurs. Paleont Pol 30:54–102

    Google Scholar 

  • Méndez A, Gianechini FA, Paulina-Carabajal A et al (2021) New furilesaurian remains from La Invernada (northern Patagonia, Argentina): A site of unusual abelisaruids abundance. Cret Res 129:104989. https://doi.org/10.1016/j.cretres.2021.104989

    Article  Google Scholar 

  • Miyashita T, Arbour VM, Witmer LM et al (2011) The internal cranial morphology of an armoured dinosaur Euoplocephalus corroborated by X-ray computed tomographic reconstruction. J Anat 219(6):661–675

    Article  PubMed  PubMed Central  Google Scholar 

  • Morhardt AC (2016) Gross anatomical brain region approximation (GABRA): assessing brain size, structure, and evolution in extinct archosaurs. Dissertation, Ohio University

    Google Scholar 

  • Morhardt AC, Ridgley RC, Witmer LM (2012) From endocast to brain: assessing brain size and structure in extinct archosaurs using gross anatomical brain region approximation (GABRA). J Vertebr Paleontol 32 (Suppl.), 145

    Google Scholar 

  • Morhardt AC, Ridgely RC, Witmer LM (2018) Gross anatomical brain region approximation (GABRA): a new landmark-based approach for estimating brain regions in dinosaurs and other archosaurs. FASEB J 31:251–252. https://doi.org/10.1096/fasebj.31.1_supplement.251.2

    Article  Google Scholar 

  • Müller RT (2021) Olfactory acuity in early sauropodomorph dinosaurs. Hist Biol 34(2):346–351

    Article  Google Scholar 

  • Müller RT, Garcia MS (2020) A paraphyletic ‘Silesauridae’ as an alternative hypothesis for the initial radiation of ornithischian dinosaurs. Biol Lett 16:20200417. https://doi.org/10.1098/rsbl.2020.0417

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller RT, Ferreira JD, Pretto FA et al (2021) The endocranial anatomy of Buriolestes schultzi (Dinosauria: Saurischia) and the early evolution of brain tissues in sauropodomorph dinosaurs. J Anat 238(4):809–827

    Article  PubMed  Google Scholar 

  • Napoli JG, Hunt T, Erickson GM (2019) Psittacosaurus amitabha, a new species of ceratopsian dinosaur from the Ondai Sayr locality, Central Mongolia. Am Mus Novit 2019(3932):1–36. https://doi.org/10.1206/3932.1

    Article  Google Scholar 

  • Nesbitt SJ, Ezcurra MD (2015) The early fossil record of dinosaurs in North America: a new neotheropod from the base of the Dockum Group (Upper Triassic) of Texas. Acta Palaeontol Pol 60:513–526

    Google Scholar 

  • Ngwenya A, Patzke N, Spocter MA et al (2013) The continuously growing central nervous system of the Nile Crocodile (Crocodylus niloticus). Anat Rec Adv Integr Anat Evol Biol 296:1489–1500

    Article  Google Scholar 

  • Nieuwenhuys R, Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer Berlin, Heidelberg

    Google Scholar 

  • Nopcsa F (1929) Dinosaurierreste aus Siebenbürgen, V. Geol Hung Palaeontol 4:1–76

    Google Scholar 

  • Norell MA, Makovicky PJ, Bever GS et al (2009) A review of the mongolian Cretaceous dinosaur Saurornithoides (Troodontidae: Theropoda). Am Mus Nov 3654:1–63

    Article  Google Scholar 

  • Norman DB, Faiers T (1996) On the first partial skull of an ankylosaurian dinosaur from the Lower Cretaceous of the Isle of Wight, Southern England. Geol Mag 133:299–310

    Article  Google Scholar 

  • Norman DB, Weishampel DB (1990) Iguanodontidae and related ornithopods. In: Weishampel DB, Dodson P, Osmólska H (eds) The dinosauria. University of California Press, Berkeley, pp 510–533

    Google Scholar 

  • Norman DB, Sues H-D, Witmer LM et al (2004a) Basal ornithopoda. In: Weishampel DB, Dodson P, Osmólska H (eds) The dinosauria, 2nd edn. University of California Press, Berkeley, pp 393–412

    Chapter  Google Scholar 

  • Norman DB, Witmer LM, Weishampel DB (2004b) Basal thyreophora. In: Weishampel DB, Dodson P, Osmólska H (eds) The dinosauria, 2nd edn. University of California Press, Berkeley, pp 335–342

    Chapter  Google Scholar 

  • Northcutt RG (2002) Understanding vertebrate brain evolution. Integr Comp Biol 42:743–756

    Article  PubMed  Google Scholar 

  • Olori JC (2010) Digital endocasts of the cranial cavity and osseous labyrinth of the burrowing snake Uropeltis woodmansoni (Alethinophidia: Uropeltidae). Copeia 2010:14–26

    Article  Google Scholar 

  • Osborn HF (1912) Crania of Tyrannosaurus and Allosaurus. Mem Am Mus Nat Hist 1:1–97

    Google Scholar 

  • Osborn HF, Mook CC (1921) Camarasaurus, Amphicoelias, and other sauropods of Cope, Memoirs of the AMNH, vol 3. American Museum of Natural History, New York, pp 247–287

    Google Scholar 

  • Osmólska H (2004) Brief report: evidence on relation of brain to endocranial cavity in oviraptorid dinosaurs. Acta Palaeontol Pol 49(2):321–324

    Google Scholar 

  • Ostrom JH (1961) Cranial morphology of the hadrosaurian dinosaurs of North America. Bull Am Mus Nat Hist 122:33–186

    Google Scholar 

  • Ostrom JH, McIntosh JS (1966) Marsh´s dinosurs. The collections from Como Buff. Yale University Press, New Heaven and London

    Google Scholar 

  • Ősi A, Pereda-Suberbiola X, Földes T (2014) Partial skull and endocranial cast of the ankylosaurian dinosaur Hungarosaurus from the Late Cretaceous of Hungary: implications for locomotion. Palaeontol Electron 17(1):1A. https://doi.org/10.26879/405

    Article  Google Scholar 

  • Pacheco C, Müller RT, Langer M et al (2019) Gnathovorax cabreirai: a new early dinosaur and the origin and initial radiation of predatory dinosaurs. Peer J 7:e7963. https://doi.org/10.7717/peerj.7963

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulina-Carabajal A (2012) Neuroanatomy of titanosaurid dinosaurs from the Upper Cretaceous of Patagonia, with comments on endocranial variability within Sauropoda. Anat Rec 295:2141–2156

    Article  Google Scholar 

  • Paulina-Carabajal A (2015) Guía para el estudio de la neuroanatomía de los dinosurios Saurischia, con énfasis en Theropoda basales. PE-APA 15:108–142

    Article  Google Scholar 

  • Paulina-Carabajal A, Currie JP (2017) The braincase of the theropod dinosaur Murusraptor: osteology, neuroanatomy and comments on the paleobiological implications of certain endocranial features. Ameghiniana 54:517–640

    Article  Google Scholar 

  • Paulina-Carabajal A, Apaldetti C, Martínez R (2019a) Paleoneuroanatomy of a new riojasaurid (Dinosauria, Sauropodomorpha) from the Late Triassic of Argentina. Abstract presented at SVP annual Meeting, 9–12 October (Brisbane)

    Google Scholar 

  • Paulina-Carabajal A, Ezcurra M, Novas F (2019b) New information on the braincase and endocranial morphology of the Late Triassic neotheropod Zupaysaurus rougieri using CT scans. J Vertebr Paleontol 39(3):e1630421. https://doi.org/10.1080/02724634.2019.1630421

  • Paulina-Carabajal A, Filippi L (2018) Neuroanatomy of the abelisaurid theropod Viavenator: the most complete reconstruction of cranial endocast and inner ear for a South American representative of the clade. Cret Res 83:84–94

    Article  Google Scholar 

  • Paulina-Carabajal A, Calvo JO (2021) Re-description of the braincase of the rebbachisaurid sauropod Limaysaurus tessonei and novel endocranial information based on CT scans. An Acad Bras Cienc 93(2):e20200762. https://doi.org/10.1590/0001-3765202120200762

    Article  PubMed  Google Scholar 

  • Paulina-Carabajal A, Canale JI (2010) Cranial endocast of the carcharodontosaurid theropod Giganotosaurus carolinii. Neues Jahrb fur Geol Palaontol Abh 258:249–256

    Google Scholar 

  • Paulina-Carabajal A, Currie PJ (2012) New information on the braincase and endocast of Sinraptor dongi (Theropoda: Allosauroidea): Ethmoidal region, endocranial anatomy and pneumaticity. Vert PalAs 50:85–101

    Google Scholar 

  • Paulina-Carabajal A, Porfiri JD (2018) The neuroanatomy of Megaraptor namunhuaiquii (Theropoda: Megaraptoridae) from the Upper Cretaceous of Patagonia, a preliminary report. Abtract presented at Reunión de Comunicaciones de la Asociación Paleontológica Argentina (Madryn)

    Google Scholar 

  • Paulina-Carabajal A, Nieto MN (2019) Brief comment on the brain and inner ear of Giganotosaurus carolinii (Dinosauria: Theropoda) based on CT scans. Ameghiniana 57(1):58–62

    Article  Google Scholar 

  • Paulina-Carabajal A, Salgado L (2007) El basicráneo de un titanosaurio (Dinosauria, Sauropoda) del Cretácico Superior del norte de Patagonia: descripción y aportes al conocimiento del oído interno de los dinosaurios. Ameghiniana 44:109–120

    Google Scholar 

  • Paulina-Carabajal A, Succar C (2015) Endocranial morphology and inner ear of the theropod Aucasaurus garridoi. Acta Palaeontol Pol 60(1):141–144

    Google Scholar 

  • Paulina-Carabajal A, Coria RA, Chiappe LM (2008) An incomplete Late Cretaceous braincase (Sauropoda: Titanosauria): new insights about the dinosaurian inner ear and endocranium. Cret Res 29:643–648

    Article  Google Scholar 

  • Paulina-Carabajal A, Carballido J, Currie PJ (2014) Braincase, neuroanatomy and neck posture of Amargasaurus cazaui (Sauropoda: Dicraeosauridae) and its implications for understanding head posture in sauropods. J Vert Paleontol 34:870–882

    Article  Google Scholar 

  • Paulina-Carabajal A, Canale JI, Haluza A (2016a) New rebbachisaurid cranial remains (Sauropoda, Diplodocoidea) from the Cretaceous of Patagonia, Argentina, and the first endocranial description for a South American representative of the clade. J Vert Paleontol 36:e1167067. https://doi.org/10.1080/02724634.2016.1167067

    Article  Google Scholar 

  • Paulina-Carabajal A, Lee YN, Jacobs LL (2016b) Neuroanatomy of the primitive nodosaurid dinosaur Pawpawsaurus campbelli and paleobiological implications of some endocranial features. Plos One 11(3):e0150845. https://doi.org/10.1371/journal.pone.0150845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paulina-Carabajal A, Cruzado-Caballero P, Calvo J (2017) Novel information on the braincase morphology of Gasparinisaura cincosaltensis (Dinosauria, Ornitischia) based on CT scans. Abstract presented at 1st Reunión de Paleovertebrados de la Cuenca Neuquina, 2–3 November 2017 (Rincón de los Sauces)

    Google Scholar 

  • Paulina-Carabajal A, Coria RA, Currie PJ et al (2018a) A natural cranial endocast with possible dicraeosaurid (Sauropoda, Diplodocoidea) affinities from the Lower Cretaceous of Patagonia. Cret Res 84:437–441

    Article  Google Scholar 

  • Paulina-Carabajal A, Lee YN, Kobayashi Y et al (2018b) Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs. Palaeogeogr Palaeoclim Palaeoecol 494:135–146

    Article  Google Scholar 

  • Paulina-Carabajal A, Filippi L, Knoll F (2020) Neuroanatomy of the titanosaur sauropod Narambuenatitan palomoi from the Upper Cretaceous of Patagonia. Argentina. PE-APA 20(2):1–9. https://doi.org/10.5710/PEAPA.21.05.2020.298

    Article  Google Scholar 

  • Paulina-Carabajal A, Currie PJ, Dungeon T et al (2021) Two braincases of Daspletosaurus (Theropoda: Tyrannosauridae): anatomy and comparsion. Can J Earth Sci. https://doi.org/10.1139/cjes-2020-0185

  • Paulina-Carabajal A, Bourke J, Morhardt A (in press) Senses. In: Zanno L, Arbour V, Holtz T (eds), The complete dinosaur, 3rd edn. Indiana University Press, Bloomington

    Google Scholar 

  • Pereda-Suberbiola J, Galton PM (1994) Revision of the cranial features of the dinosaur Struthiosaurus austriacus Bunzel (Ornithischia: Ankylosauria) from the Late Cretaceous of Europe. Neues Jahrb Geol Paläontol Abhand 191:173–200

    Google Scholar 

  • Peyre de Fabregues C, Allain R, Barriel V (2015) Root causes of phylogenetic incongruence observed within basal sauropodomorph interrelationships. Zool J Linn Soc 175:569–586

    Google Scholar 

  • Pol D, Otero A, Apaldetti C et al (2021) Triassic sauropodomorph dinosaurs from South America: the origin and diversification of dinosaur dominated herbivorous faunas. J South Am Earth Sci 107:103145. https://doi.org/10.1016/j.jsames.2020.103145

    Article  Google Scholar 

  • Poropat SF, Mannion PD, Upchurch P et al (2016) New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography. Sci Rep 6:34467. https://doi.org/10.1038/srep34467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter WR, Witmer LM (2020) Vascular patterns in the heads of dinosaurs: evidence for blood vessels, sites of thermal exchange, and their role in physiological thermoregulatory strategies. Anat Record 303:1075–1103

    Article  Google Scholar 

  • Porter WR, Sedlmayr JC, Witmer LM (2016) Vascular patterns in the heads of crocodilians blood vessels and sites of thermal exchange. J Anat 229:800–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell JE (2003) Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Rec Queen Vic Museum 111:1–173

    Google Scholar 

  • Raath MA (1977) The anatomy of the Triassic theropod Syntarsus rhodesiensis (Saurischia: Podokesauridae) and a consideration of its biology. Dissertation, Rhodes University

    Google Scholar 

  • Rahmat S, Gilland E (2014) Comparative anatomy of the carotid-basilar arterial trunk and penetrating arteries in vertebrates. Open Anat J 6. https://doi.org/10.2174/1877609401406010001

  • Rauhut OWM (2003) The interrelationships and evolution of basal theropod dinosaurs. Spec Pap Palaeontol 69:1–213

    Google Scholar 

  • Rauhut OWM, Fechner R, Remes K et al (2011) How to get big in the Mesozoic: the evolution of the sauropodomorph body plan. In: Klein N, Remes K, Gee CT, Sander PM (eds), Biology of the Sauropod Dinosaurs: Understanding the life of giants. Bloomington, Indiana University Press pp 119–149

    Google Scholar 

  • Rich T, Rich P (1989) Polar dinosaurs and biotas of the Early Cretaceous of southeastern Australia. Nat Geograp Res 5(1):15–53

    Google Scholar 

  • Rich TH, Vickers-Rich P, Gangloff RA (2002) Polar dinosaurs. Science 295:979–980

    Google Scholar 

  • Rogers SW (1998) Exploring dinosaur neuropaleobiology: computed tomography scanning and analysis of an Allosaurus gracilis endocast. Neuron 21:673–679

    Article  PubMed  CAS  Google Scholar 

  • Rogers SW (1999) Allosaurus, crocodiles, and birds: evolutionary clues from spiral computed tomography of an endocast. Anat Rec 257:162–173

    Article  PubMed  CAS  Google Scholar 

  • Rogers SW (2005) Reconstructing the behaviors of extinct species. Am J Med Genet 134A:349–358

    Article  Google Scholar 

  • Romer AS (1956) Osteology of the Reptiles. California, University of Chicago Press

    Google Scholar 

  • Romick CA (2013) Ontogeny of the brain endocasts of ostriches (Aves: Struthio camelus) with implications for interpreting extinct dinosaur endocasts. Dissertation, Ohio University

    Google Scholar 

  • Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9(5):250–257

    Article  PubMed  Google Scholar 

  • Russell DA (1969) A new specimen on Stenonychosaurus from the Oldman Formation (Cretaceous) of Alberta. Can J Earth Sci 6:595–612

    Article  Google Scholar 

  • Russell DA (1972) Ostrich Dinosaurs from the Late Cretaceous of Western Canada. Can J Earth Sci 9:375–402

    Google Scholar 

  • Sakagami R, Kawabe S (2020) Endocranial anatomy of the ceratopsid dinosaur Triceratops and interpretations of sensory and motor function. Peer J 8:e9888. https://doi.org/10.7717/peerj.9888

    Article  PubMed  PubMed Central  Google Scholar 

  • Salgado L, Coria RA, Calvo JO (1997) Evolution of titanosaurid sauropods. I: Phylogenetic analysis based on the postcranial evidence. Ameghiniana 34:2–32

    Google Scholar 

  • Sampson SD (2011) Dinosaur odyssey: Fossil threads in the web of life. University of California Press, Berkeley

    Google Scholar 

  • Sampson SD, Witmer LM (2007) Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vertebr Paleontol 8:32–102

    Article  Google Scholar 

  • Sander PM (2013) An evolutionary cascade model for sauropod dinosaur gigantism – overview, update and tests. PLoS One 8(10):e78573. https://doi.org/10.1371/journal.pone.0078573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sander PM, Peitz C, Jackson FD et al (2008) Upper Cretaceous titanosaur nesting sites and their implications for sauropod dinosaur reproductive biology. Palaeontographica A 284:69–107

    Article  Google Scholar 

  • Sander PM, Christian A, Clauss M et al (2011) Biology of the sauropod dinosaurs: the evolution of gigantism. Biol Rev 86:117–155

    Article  PubMed  Google Scholar 

  • Sanders RK, Smith DK (2005) The endocranium of the theropod dinosaur Ceratosaurus studied with computed tomography. Acta Palaeontol Pol 50:601–616

    Google Scholar 

  • Saveliev SV, Alifanov VR (2007) A new study of the brain of the predatory dinosaur Tarbosaurus bataar (Theropoda, Tyrannosauridae). Paleontol J 41:281–289

    Article  Google Scholar 

  • Saveliev SV, Alifanov VR, Bolotsky YL (2012) Brain anatomy of Amurosaurus riabinini and some neurobiological peculiarities of duck-billed dinosaurs. Paleontol J 46:79–91

    Article  Google Scholar 

  • Schade M, Rauhut OWM, Evers SW (2020) Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory. Sci Rep 10:9259. https://doi.org/10.1038/s41598-020-66261-w

  • Schmitt A, Knoll F, Tschopp E (2015) Paleoneurology of Europasaurus holgeri, an insular dwarf sauropod from northern Germany. J Vertebr Paleontol 35(suppl):209

    Google Scholar 

  • Schmitz L, Motani R (2011) Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332:705–708

    Article  PubMed  CAS  Google Scholar 

  • Sedlmayr JC (2002) Anatomy, evolution, and functional significance of cephalic vasculature in Archosauria. Dissertation, Ohio University

    Google Scholar 

  • Sedlmayr JC (2022) Anatomy, Evolution, and Functional Significance of Cephalic Vasculature in Archosauria (Unpublished Ph.D.dissertation). Ohio University, 398

    Google Scholar 

  • Seeley HG (1887) On the classification of the fossil animals commonly named Dinosauria. Proc R Soc Lon 43:165–171

    Google Scholar 

  • Senter P (2005) Function in the stunted forelimbs of Mononykus olecranus (Theropoda), a dinosaurian anteater. Paleobiol 31:373–381

    Article  Google Scholar 

  • Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147

    Google Scholar 

  • Sereno PC, Beck AL, Dutheil D et al (1998) A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science 282(5392):1298–1302

    Article  PubMed  CAS  Google Scholar 

  • Sereno PC, Wilson JA, Witmer LM (2007) Structural extremes in a Cretaceous dinosaur. PLos One 2:e1230. https://doi.org/10.1371/journal.pone.0001230

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano-Brañas CI, Hernández-Rivera R, Torres-Rodríguez E et al (2006) A natural hadrosaurid endocast from the Cerro del Pueblo Formation (Upper Cretaceous) of Coahuila, Mexico. In: Lucas SG, Sullivan RM (eds) Late cretaceous vertebrates from the Western interior. Bull N M Mus Nat Hist Sci 35:317–321

    Google Scholar 

  • Shibata M, Kawabe S, Chokchaloemwong D et al (2016) Endocranial anatomy of Sirindhorna khoratensis (Ornithopoda, Hadrosauroidea) and its implication. Abstract presented at the 76th SVP annual meeting, 26–29 October (Salt Lake City)

    Google Scholar 

  • Smaers JB, Dechmann DK, Goswami A et al (2012) Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans and primates. PNAS 109(44):18006–18011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith DK, Sanders RK, Wolfe DG (2018) A re-evaluation of the basicranial soft tissues and pneumaticity of the therizinosaurian Nothronychus mckinleyi (Theropoda; Maniraptora). Plos One 13(7):e0198155. https://doi.org/10.1371/journal.pone.0198155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Starck D (1979) Cranio-cerebral relations in recent reptiles. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the reptilia, Neurology A, vol 9. Academic, London, pp 1–36

    Google Scholar 

  • Stevens KA (2006) Binocular vision in theropod dinosaurs. J Vertebr Paleontol 26:321–330

    Article  Google Scholar 

  • Striedter G (2005) Principles of brain evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Stromer E (1931) Ergebinsse der Forschungsreisen Prof E. Stromers in den Wuusten Agyptens. II Wirbeltierreste der Baharije-stufe (unterstes Cenoman). 10. Ein Skelett-Rest von Carcharodontosaurus nov. gen. Abh Bayer Akad Wissensch Math-Naturwiss Abt 9:1–23

    Google Scholar 

  • Sues H-D, Averianov A, Ridgely RC et al (2015) Titanosauria (Dinosauria, Sauropoda) from the Upper Cretaceous (Turonian) Bissekty Formation of Uzbekistan. J Vertebr Paleontol 35:1–14

    Google Scholar 

  • Tahara R, Larsson HCH (2011) Cranial pneumatic anatomy of Ornithomimus edmontonicus (Ornithomimidae: Theropoda). J Vertebr Paleontol 31:127–143

    Article  Google Scholar 

  • Thomas DA (2015) The cranial anatomy of Tenontosaurus tilletti Ostrom, 1970 (Dinosauria, Ornithopoda). Palaeontol Electron 18(2):37A. https://doi.org/10.26879/450

    Article  Google Scholar 

  • Tumanova TA (1987) The armored dinosaurs of Mongolia, Transactions of the joint Soviet-Mongolian paleontological expedition, vol 32. Izdat. Nauka, Moskva, pp 1–76

    Google Scholar 

  • Tykoski RS, Fiorillo TR (2012) Beauty or brains? The braincase of Pachyrhinosaurus perotorum and its utility for species-level distinction in the centrosaurinae ceratopsid Pachyrhinosaurus. Earth Environ Sci Trans R Soc Edin 103:487–499

    Google Scholar 

  • Upchurch P, Barret PM, Dodson P (2004) Sauropoda. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd ed, University of California Press, Berkeley pp 259–322

    Google Scholar 

  • Vergne AL, Pritz MB, Mathevon N (2009) Acoustic communication in crocodilians: from behaviour to brain. Biol Rev 84:391–411

    Google Scholar 

  • von Huene F (1906) Ueber die Dinosaurier der aussereuropaischen Trisa. Geol Palaeontol Abhandl 8:97–156

    Google Scholar 

  • von Huene F, Matley CA (1933) The Cretaceous Saurischia and Ornithischia of the central provinces of India. Mem Geol Surv India 21:1–74

    Google Scholar 

  • Vickaryous MK, Maryanska T, Weishampel DB (2004) Ankylosauria. In: Weishampel DB, Dodson P, Osmólska H (eds) The dinosauria, 2nd edn. University of California Press, Berkeley, pp 362–392

    Google Scholar 

  • Walsh SA, Milner A (2011) Evolution of the avian brain and senses. In: Dyke G, Kaiser G (eds) Living doinosaurs: the evolutionary history of modern birds. Wiley, London, pp 282–305

    Chapter  Google Scholar 

  • Walsh SA, Barrett PM, Milner AC et al (2009) Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds. Proc Royal Soc B 276:1355–1360

    Article  Google Scholar 

  • Walsh SA, Iwaniuk AN, Knoll MA et al (2013) Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLos One 8(6):e67176. https://doi.org/10.1371/journal.pone.0067176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe A, Balanoff AM, Gignac PM et al (2021) Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 10:e68809

    Google Scholar 

  • Watanabe A, Gignac PM, Balanoff AM et al (2019) Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? J Anat 234:291–305

    Article  PubMed  Google Scholar 

  • Wedel M, Atterholt J, Dooley AC Jr et al (2021) Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus. Academia Letters 911:10.20935/AL911

    Google Scholar 

  • Weishampel DB, Dodson P, Osmólka K (2004) The dinosauria. University of California Press, Berkeley

    Book  Google Scholar 

  • Werner J, Griebeler EM (2013) Reproduction in non-avian dinosaurs: linking information from the fossil record and from the allometries of extant close relatives. PLoS ONE 8(8):e72862. https://doi.org/10.1371/journal.pone.0072862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson J, D’Emic M, Rogers C et al (2009) Reassessment of sauropod dinosaur Jainosaurus (=“Antarctosaurus”) septentrionalis from the Upper Cretaceous of India. Contrib Mus Paleontol Univ Mich 32(2):17–40

    Google Scholar 

  • Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, New York, pp 19–33

    Google Scholar 

  • Witmer LM, Ridgely RC (2008a) The paranasal air sinuses of predatory and armored dinosaurs (Archosauria: Theropoda and Ankylosauria) and their contribution to cephalic structure. Anat Rec 291:1362–1388

    Article  Google Scholar 

  • Witmer LM, Ridgely RC (2008b) Structure of the brain cavity and inner ear of the centrosaurine dinosaur Pachyrhinosaurus based on CT scanning and 3D visualization. In: Currie PJ, Langston W Jr, Tanke DH (eds) A new horned dinosaur from an Upper Cretaceous bone bed in Alberta. Canadian Science Publishing, Ottawa, pp 117–144

    Google Scholar 

  • Witmer LM, Ridgely RC (2009) New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat Rec 292:1266–1296

    Article  Google Scholar 

  • Witmer LM, Ridgely RC (2010) The Cleveland tyrannosaur skull (Nanotyrannus or Tyrannosaurus): new findings based on CT scanning, with special reference to the braincase. Kirtlandia 57:61–81

    Google Scholar 

  • Witmer LM, Chatterjee S, Franzosa J et al (2003) Neuroanatomy of flying reptiles and implications for flight, posture and behavior. Nature 425:950–953

    Article  PubMed  CAS  Google Scholar 

  • Witmer LM, Ridgely RC, Dufeau DL et al (2008) Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In: Endo H, Frey R (eds) Anatomical imaging: towards a new morphology. Springer, Tokyo, pp 67–88

    Chapter  Google Scholar 

  • Wylie DRW, Gutiérrez-Ibáñez C, Iwaniuk A (2015) Integrating brain, behavior and phylogeny to understand the evolution of sensory systems in birds. Front Neurosci 9(31):281. https://doi.org/10.3389/fnins.2015.00281

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyneken J (2007) Reptilian neurology: anatomy and function. Vet Clin Exot Anim 10:837–853

    Google Scholar 

  • Xing L, Paulina-Carabajal A, Currie PJ et al (2014) Braincase anatomy of the basal theropod Sinosaurus from the Early Jurassic of China. Acta Geol Sin 88:1653–1664

    Article  Google Scholar 

  • Yates AM (2007) The first complete skull of the Triassic dinosaur Melanorosaurus Haughton (Sauropodomorpha: Anchisauria). In Barret PM, Batten DJ (eds). Evolution and palaeobiology of early sauropodomorph dinosaurs. Special Pap Palaeontol 77:9–55

    Google Scholar 

  • Young C-C (1958) The dinosaurian remains of Laiyang, Shantung. Palaeontol Sin, Ser C 42(16):1–138

    Google Scholar 

  • Zelenitsky DK, Therrien F, Kobayashi Y (2009) Olfactory acuity in theropods: palaeobiological and evolutionary implications. Proc R Soc B 276:667–673

    Article  PubMed  Google Scholar 

  • Zelenitsky DK, Therrien F, Ridgely RC et al (2011) Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc R Soc B 278:3625–3634

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q-N, King L, Li D-Q et al (2019) Endocranial morphology of Auroraceratops sp. (Dinosauria: Ceratopsia) from the Early Cretaceous of Gansu Province, China. Hist Biol 32(10):1455–1366

    Google Scholar 

  • Zheng Z (1996). Cranial anatomy of Shunosaurus and Camarasaurus (Dinosauria: Sauropoda) and the phylogeny of the Sauropoda. Dissertation, Texas Tech University

    Google Scholar 

  • Zhou C-F, Gao K-Q, Fox RC et al (2007) Endocranial morphology of psittacosaurs (Dinosauria: Ceratopsia) based on CT scans of new fossils from the Lower Cretaceous, China. Palaeoworld 16(4):285–293

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariana Paulina-Carabajal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paulina-Carabajal, A., Bronzati, M., Cruzado-Caballero, P. (2023). Paleoneurology of Non-avian Dinosaurs: An Overview. In: Dozo, M.T., Paulina-Carabajal, A., Macrini, T.E., Walsh, S. (eds) Paleoneurology of Amniotes . Springer, Cham. https://doi.org/10.1007/978-3-031-13983-3_8

Download citation

Publish with us

Policies and ethics