Skip to main content

A Look in to the Neurocranium of Living and Extinct Lepidosauria

  • Chapter
  • First Online:
Paleoneurology of Amniotes

Abstract

Braincase descriptions of lepidosaurian clades (Rhynchocephalia and Squamata) are scarce, and paleoneurological studies are even scarcer when compared to other reptiles. Regarding paleoneurology sensu stricto, so far mosasauroids and snakes (the latter by means of a single published study) remain the better known lepidosaur groups. Further comparisons among extinct and living lepidosaurs – along with their evolutive history starting in the early Triassic– are not possible due to the lack of neuroanatomical information in most families. Here we provide a revision of the published literature on endocranial anatomy and paleoneurology in Lepidosauria, including an overview of the comparative braincase and neuroanatomy of living representatives of the clade. We hope that this information will have an impact on future studies in the field of comparative neuroanatomy in both living and extinct species. Micro-CT and diceCT data are currently facilitating neuroanatomical comparisons among living species, preparing the background for a potential rise of paleoneurological studies of non-marine extinct lepidosaurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albino AM, Caldwell M (2003) Hábitos de vida de la serpiente cretácica Dinilysia patagonica Woodward. Ameghiniana 40:407–414

    Google Scholar 

  • Albino A (2011) Evolution of Squamata reptiles in Patagonia based on the fossil record. Biol J Linn Soc 103:441–457

    Article  Google Scholar 

  • Allemand R (2017) Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco: palaeobiological and behavioral implications. Ph.D. Dissertation, Museum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Allemand RR, Boistel G, Daghfous Z, Blanchet R, Cornette N, Bardet P, Vincent HA (2017) Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals. J Anat 231:849–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson CL, Kabalka GW, Layne DG et al (2000) Non-invasive high field MRI brain imaging of the garter snake (Tamnhophis sirtalis). Copeia 1:265–269

    Google Scholar 

  • Apesteguía S (2008) Esfenodontes (Reptilia, Lepidosauria) del Cretácico Superior de Patagonia: Anatomía y filogenia. Dissertation, Universidad Nacional de La Plata

    Google Scholar 

  • Apesteguía S, Zaher H (2006) A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature 440:1037–1040

    Article  PubMed  Google Scholar 

  • Armstrong JA, Gamble HJ, Goldby F (1953) Observations on the olfactory apparatus and telencephalon of Anolis, a microsmatic lizard. J Anat 87:288–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auen EL, Langebartel DA (1977) The cranial nerves of the colubrid snakes Elaphe and Thamnophis. J Morphol 154:205–222

    Article  CAS  PubMed  Google Scholar 

  • Bahl KN (1937) Skull of Vanarus monitor. Rec Ind Mus 39:133–174

    Google Scholar 

  • Balanoff AM, Bever GS (2020) The role of endocasts in the study of brain evolution. In: Kaas J (ed) Evolutionary neuroscience. Elsevier, pp 29–49

    Chapter  Google Scholar 

  • Balanoff AM, Bever GS (2017) The role of endocasts in the study of brain evolution. In: Kaas (ed) Evolutionary Neuroscience, Academic Press pp 29–49

    Google Scholar 

  • Balanoff AM, Bever GS, Colbert MW et al (2016) Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. J Anat 229:173e190

    Article  Google Scholar 

  • Barbas-Henry HA (1988) The cranial nerves III-XII in the monitor lizard Varanus exanthematicus: a neuroanatomical tracing study. Free University Press, Amsterdam

    Google Scholar 

  • Bardet N, Suberbiola XP, Jalil NE (2003) A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. C R Palevol 2:607–616

    Article  Google Scholar 

  • Bardet N, Suberbiola XP, Iarochene M, Bouya B, Amaghzaz M (2005) A new species of Halisaurus from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zool J Linn Soc 143:447–472

    Article  Google Scholar 

  • Bardet N, Falconnet J, Fischer V, Houssaye A, Jouve S, Pereda Suberbiola X, Pérez-García A, Rage JC, Vincent P (2014) Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Res 26:869–887

    Article  Google Scholar 

  • Bauer AM (1989) Extracranial endolymphatic sacs in Eurydactylodes (Reptilia: Gekkonidae), with comments on endolymphatic function in lizards in general. J Herpetol 23:172–175

    Article  Google Scholar 

  • Bauer AM, Beach-Mehrotra M, Bermudez Y et al (2018) The tiny skull of the Peruvian gecko “Pseudogonatodes barbouri” (Gekkota: Sphaerodactylidae) obtained via a divide-and-conquer approach to morphological data acquisition. S Am J Herpet 13:102–116

    Article  Google Scholar 

  • Bell GL Jr (1997) A phylogenetic revision of North American and adriatic Mosasauroidea. In: Callaway JM, Nicholls EL (eds) Ancient marine reptiles. Academic Press, San Diego, pp 293–332

    Chapter  Google Scholar 

  • Bell GL, Polcyn MJ (2005) Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Neth J Geosci 84(3):177–194

    Google Scholar 

  • Bell CJ, Evans SE, Maisano JA (2003) The skull of the gymnophthalmid lizard Neusticurus ecpleopus (Reptilia: Squamata). Zool J Linn Soc 103:283–304

    Article  Google Scholar 

  • Bellairs AA, Kamal AM (1981) The chondrocranium and the development of the skull in recent reptiles. In: Gans C (ed) Biology of the reptilia. Academic Press, New York

    Google Scholar 

  • Berman DS (1973) Spathorhynchus fossorium, a Middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia 1973:704–721

    Article  Google Scholar 

  • Berman DS (1976) A new amphisbaenian (Reptilia: Amphisbaenia) from the Oligocene-Miocene John Day Formation, Oregon. J Paleontol 50:165–174

    Google Scholar 

  • Berman DS (1977) Spathorhynchus natronicus, a new species of rhineurid amphisbaenian (Reptilia) from the early Oligocene of Wyoming. J Paleontol 51:986–991

    Google Scholar 

  • Bever GS, Norell MA (2017) A new rhynchocephalian (Reptilia: Lepidosauria) from the Late Jurassic of Solnhofen (Germany) and the origin of the marine Pleurosauridae. R Soc Open Sci 4:170570

    Article  PubMed  PubMed Central  Google Scholar 

  • Bever GS, Bell CJ, Maisano JA (2005) The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae). Palaeontol Electron 8(1):1–36

    Google Scholar 

  • Boistel R, Herrel A, Lebrun R, Daghfous G et al (2011) Shake rattle and roll: The bony labyrinth and aerial descent in squamates. Integr Comp Biol 51:957–968

    Article  PubMed  Google Scholar 

  • Bolet A, Delfino M, Fortuny J, Almecija S, Robles JM, Alba DM (2014) An amphisbaenian skull from the European miocene and the evolution of Mediterranean worm lizards. PLoS ONE 9:e98082

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolet A, Stanley EL, Daza JD, Arias JS, Čerňanský A, Vidal-García M, Bevitt JJ, Peretti A, Evans SE (2021) Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr Biol 31:3303–3314.e3303

    Article  Google Scholar 

  • Borsuk-Białynicka M (1985) Carolinidae, a new family of xenosaurid-like lizards from the Upper Cretaceous of Mongolia. Acta Palaeontol Pol 30:151–176

    Google Scholar 

  • Borsuk-Bialynicka M (1987) Carusia, a new name for the Later Cretaceous lizard Carolina. Acta Palaeontol Pol 32:153

    Google Scholar 

  • Borsuk-Białynicka M (1990) Gobekko cretacicus gen. et. sp. n., a new gekkonid lizard from the Cretaceous of the Gobi Desert. Acta Palaeontol Pol 35:67–76

    Google Scholar 

  • Brizuela S, Albino A (2017) Redescription of the extinct species Callopistes bicuspidatus Chani, 1976 (Squamata, Teiidae). J Herpetol 51:343–354

    Article  Google Scholar 

  • Broom R (1903) On the skull of a true Lizard (Paliguana whitei) from the Triassic beds of South Africa. Rec AlbanyMus 1:1–3

    Google Scholar 

  • Bruce LL (2006) Evolution of the nervous system in reptiles. In: Kaas JH (ed) Evolution of nervous systems, vol II. The evolution of nervous systems in non-mammalian vertebrates. Elsevier, pp 125–156

    Google Scholar 

  • Bruce L (2009) Evolution of the brain in reptiles. In: Binder, Hiokawa, Windhorst (eds), Encyclopedia ofNeuroscience, Springer, Berlin pp 1295–1301

    Google Scholar 

  • Burbrink FT, Grazziotin FG, Pyron RA et al (2020) Interrogating genomic-scale data for Squamata (Lizards, Snakes, and Amphisbaenians) shows no support for key traditional morphological relationships. Syst Biol 69:502–520

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana (Linnaeus). J Comp Neurol 149:439–462

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MW (1999) Squamate phylogeny and the relationships of snakes and mosasauroids. Zool J Linn Soc 125(1):115–147

    Article  Google Scholar 

  • Caldwell MW (2012) A challenge to categories: what, if anything, is a mosasaur? Bull Soc Géol Fr 183:7–34

    Article  Google Scholar 

  • Caldwell MW, Konishi T, Dutchak A, Bell GB Jr, Lamb J (2007) Osteology of the middle ear in mosasaurs (Squamata): from impedance matching to underwater hearing. In: Everhart MJ (ed) Second mosasaur meeting abstract booklet. Fort Hays State University – Sternberg Museum of Natural History, Hays, p 10

    Google Scholar 

  • Caldwell MW, Nydam RL, Palci A, Apesteguía S (2015) The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insight on snake evolution. Nat Commun 6:5996

    Article  CAS  PubMed  Google Scholar 

  • Camaiti M, Evans AR, Hipsley CA, Chapple DG (2021) A farewell to arms and legs: a review of limb reduction in squamates. Biol Rev Camb Philos Soc 96:1035–1050

    Article  PubMed  Google Scholar 

  • Camp CL (1923) Classification of the lizards. Am Mus Nat Hist Bull 48:289–481

    Google Scholar 

  • Camp CL (1942) California mosasaurs. University of California Press, Berkeley

    Google Scholar 

  • Carroll RL, deBraga M (1992) Aigialosaurs: Mid-Cretaceous varanoid lizards. J Vert Paleontol 12(1):66–86

    Article  Google Scholar 

  • Čerňanský A, Stanley EL, Daza JD et al (2022) A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument. Res Sq. https://doi.org/10.21203/rs.3.rs-952564/v1

  • Chambi-Trowell SAV, Whiteside DI, Benton MJ (2019) Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Britain. Acta Paleontol Pol 64

    Google Scholar 

  • Chou CY, Xing LD (2020) Vertebrate remains in amber around the world. Acta Palaeontol Sin 59:30–42

    Google Scholar 

  • Christensen K (1927) The morphology of the brain of Sphenodon. Univ Iowa Stud Nat Hist 12:1–29

    Google Scholar 

  • Conrad JL (2008) Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull Am Mus Nat Hist 310:1–182

    Article  Google Scholar 

  • Conrad JL, Daza JD (2015) Naming and rediagnosing the Cretaceous Gekkonomorph (Reptilia, Squamata) from Oosh (Ovorkhangai, Mongolia). J Vert Paleontol 35

    Google Scholar 

  • Conrad JL, Norell M (2006) High-resolution X-ray computed tomography of an Early Cretaceous gekkonomorph (Squamata) from Öösh (Övorkhangai; Mongolia). Hist Biol 18:405–431

    Article  Google Scholar 

  • Conrad JL, Norell M (2008) The braincase of two glyptosaurines (Anguidae, Squamata) and anguid phylogeny. Am Mus Nov 3613:1–24

    Article  Google Scholar 

  • Conrad JL, Rieppel O, Grande L (2008) Re-assessment of varanid evolution based on new data from Saniwa ensidens Leidy, 1870 (Squamata, Reptilia). Am Mus Nov 3630:1–15

    Article  Google Scholar 

  • Conrad JL, Rieppel O, Gauthier JA, Norell MA (2011) Osteology of Gobiderma pulchrum (Monstersauria, Lepidosauria, Reptilia) Bull Am Mus. Nat Hist 362:1–88

    Google Scholar 

  • Conrad JL, Balcarcel AM, Mehling CM (2012) Earliest Example of a Giant Monitor Lizard (Varanus, Varanidae, Squamata). PLoS ONE 7(8):e41767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruzado-Caballero P, Castillo Ruiz C, Bolet A, Colmenero JR, De la Nuez J, Casillas R, Llacer S, Bernardini F, Fortuny J (2019) First nearly complete skull of Gallotia auaritae (lower-middle Pleistocene, Squamata, Gallotiinae) and a morphological phylogenetic analysis of the genus Gallotia. Sci Rep 9:16629

    Article  PubMed  PubMed Central  Google Scholar 

  • Cundall D, Irish F (2008) The snake skull. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, Volume 20, Morphology H. Society for the Study of Amphibians and Reptiles, Ithaca, pp 349–692

    Google Scholar 

  • Cuny G, Jaeger JJ, Mahboubi M et al (1990) Les plus anciens serpentes (Reptilia, Squamata) connus. Mise au point sur l’âge géologique des Serpents de la partie moyenne du Crétacé. C R séances Acad Sci Paris Ser 2(311):1267–1272

    Google Scholar 

  • Cuthbertson RS, Maddin HC, Holmes RB, Anderson JS (2015) The braincase and endosseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behavior. Anat Rec 298:1597–1611

    Article  Google Scholar 

  • deBraga M, Carroll RL (1993) The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evol Biol 27:245–322

    Google Scholar 

  • Dakrory AI (2011a) Innervation of the Olfactory Apparatus of Varanus Niloticus (Squamata– Lacertilia-Varanidae). J Am Sci 7(9)

    Google Scholar 

  • Dakrory AI (2011b) Anatomical study on the cranial nerves of the spiny tail lizard Uromastyx aegypticus (Squamata, Lacertilia, Agamidae) II-nervous facialis. J Egypt Ge Soc Zool 63B:99–129

    Google Scholar 

  • Daza JD, Bauer AM (2015) Cranial anatomy of the pygopodid lizard Aprasia repens, a gekkotan masquerading as a scolecophidian. In: Bininda-Emonds ORP, Powell GL, Jamniczky HA, Bauer AM, Theodor JM (eds) All animals are interesting: a festschrift in honour of Anthony P. Russell. BIS Verlag, Oldenburg, pp 303–350

    Google Scholar 

  • Daza JD, Abdala V, Thomas R, Bauer AM (2008) Skull anatomy of the miniaturized gecko Sphaerodactylus roosevelti (Squamata: Gekkota). J Morphol 239:1340–1364

    Google Scholar 

  • Daza JD, Bauer AM, Snively E (2013) Gobekko cretacicus (Reptilia: Squamata) and its bearing on the interpretation of gekkotan affinities. Zool J Linn Soc 167:430–448

    Article  Google Scholar 

  • Daza JD, Mapps AA, Lewis PJ, Thies ML, Bauer AM (2015) Peramorphic traits in the tokay gecko skull. J Morphol 276:915–928

    Article  PubMed  Google Scholar 

  • Daza JD, Stanley EL, Wagner P, Bauer AM, Grimaldi DA (2016) Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci Adv 2

    Google Scholar 

  • Dendy A (1909) The intracranial vascular system of sphenodon. Proc R Soc B 81:403–427

    Google Scholar 

  • Dendy A (1910) On the structure, development and morphological interpretation of the pineal organs and adjacent parts of the brain in the tuatara (Sphenodon punctatus). Philos Trans R Soc Lond B 201:226e331

    Google Scholar 

  • Diaz RE, Trainor PA (2019) An integrative view of lepidosaur cranial anatomy, development, and diversification. In: Ziermann J, Diaz R Jr, Diogo R (eds) Heads, jaws, and muscles. Fascinating life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93560-7_9

    Chapter  Google Scholar 

  • Estes R (1983) Handbuch der Paläherpetologie, Sauria terrestria, Amphisbaenia. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Estes R, Frazzetta TH, Williams EE (1970) Studies on the fossil snake Dinilysia patagonica Woodward: part I. Cranial morphology. Bull Mus Comp Zool 140:25–74

    Google Scholar 

  • Estes R, de Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard families. Essays commemorating Charles L. Camp. Stanford University Press, California, pp 119–281

    Google Scholar 

  • Evans SE (1980) The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zool J Linn Soc 70:203–264

    Article  Google Scholar 

  • Evans S (1984) The classification of the Lepidosauria. Zool J Linn Soc 82:87–100

    Article  Google Scholar 

  • Evans SE (1987) The braincase of Youngina capensis (Reptilia: Diapsida; Permian). N Jb Geol Paläont Mh 4:293–203

    Google Scholar 

  • Evans SE (1991) A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of England. Zool J Linn Soc 103:391–412

    Google Scholar 

  • Evans SE (1998) Crown-group lizards (Reptilia, Squamata) from the Middle Jurassic of the British Isles.Palaeontographica Ab 250(4):123–154

    Google Scholar 

  • Evans SE (2008) The skull of lizards and tuatara. In: Gans C, Gaunt S, Adler K (eds) Biology of the reptilia, Volume 20, Morphology H. Society for the Study of Amphibians and Reptiles, Ithaca, pp 1–347

    Google Scholar 

  • Evans SE (2016) The lepidosaurian ear: variations on a theme. In: Clack J, Fay R, Popper A (eds) Evolution of the vertebrate ear. Springer handbook of auditory research. Springer Nature, Cham, pp 245–284

    Google Scholar 

  • Evans SE (2022) The origin and early diversification of squamates. In: Gower, Zaher (eds), The origins and earlyevolutionary history of snakes, Cambridge University Press, pp 7–25

    Google Scholar 

  • Evans SE, Chure DC (1998) Paramacellodid lizard skulls from the Jurassic Morrison Formation at Dinosaur National Monument, Utah. J Vert Paleontol 18:99–114

    Article  Google Scholar 

  • Evans SE, Jones MEH (2010) The origin, early history and diversification of lepidosauromorph reptiles. In: Bandyopadhyay S (ed) New aspects of Mesozoic biodiversity, lecture notes in earth sciences. Springer, Berlin, pp 27–44

    Chapter  Google Scholar 

  • Ford DP, Evans SE, Choiniere JN, Fernandez V, Benson RBJ (2021) A reassessment of the enigmatic diapsid Paliguana whitei and the early history of Lepidosauromorpha. Proc Biol Sci 288:20211084

    PubMed  PubMed Central  Google Scholar 

  • Fraser NC (1982) A new rhynchocephalian from the British Upper Trias. Palaeontology 25:709–725

    Google Scholar 

  • Gamble T, Greenbaum E, Russell AP, Jackman TR, Bauer AM (2012) Repeated origin and loss of toepads in gekkotan lizards. PLoS ONE 7:e39429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gans C, Wever EG (1976) The ear and hearing in Sphenodon punctatus. PNAS 73 (11):4244–4246

    Google Scholar 

  • Gans C, Northcutt RG, Ulinski P (eds) (1979a) Biology of the reptilia, Volume 9, Neurology A. Academic Press, London

    Google Scholar 

  • Gans C, Northcutt RG, Ulinski P (eds) (1979b) Biology of the reptilia, Volume 10. Neurology B. Academic Press, London

    Google Scholar 

  • Gans C, Northcutt RG, Ulinski P (eds) (1992) Biology of the reptilia, Volume 17. Neurology C. Sensorimotor integration. Academic Press, London

    Google Scholar 

  • Gao K, Norell M (1998) Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert and phylogenetic relationships of the anguimorphan lizards. Am Mus Nov 3230:1–51

    Google Scholar 

  • Gao K, Norell MA (2000) Taxonomic composition and systematics of late cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities Mongolian Gobi Desert. Bull Am Mus Nat Hist 249:4–52

    Google Scholar 

  • García S (2021) Morfología neurocraneana del Teiidae (Squamata/Lacertilia) Callopistes cf. rionegrensis de laFormación Chichinales (Mioceno temprano), Provincia de Río Negro, Argentina. Undergraduate thesis, UniversidadNacional de Rio Negro

    Google Scholar 

  • García S, Paulina-Carabajal A, Cruzado-Caballero P (2021) Reconstrucción del oído interno de la lagartija extintaCallopistes cf. rionegrensis. PE-APA 21(R2):R21. https://doi.org/10.5710/PEAPA.08.06.2021.394

  • Garberoglio FF, Apesteguía S, Simões T, Palci A, Gómez R, Nydam R, Larsson H, Lee M, Caldwell M (2019) New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Sci Adv 5:eaax5833

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner BG (1982) Tetrapod classification. Zool J Linn Soc 74:207–232

    Article  Google Scholar 

  • Gardner NM, Holliday CM, O’Keefe FR (2010) The baincase of Youngina capensis (Reptilia, Dipsida): new insights from high-resolution CT scanning of the holotype. Palaentol Electron 13(19A):16

    Google Scholar 

  • Gauthier J, Estes R, Queiroz K (1988) A phylogenetic analysis of lepidosauromorpha. In: Estes, Despard, Gregory (eds), Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L.Camp, StanfordUniversity Press, pp 15–98

    Google Scholar 

  • Gauthier J, Kearney M, Maisano JA et al (2012) Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bull Peabody Mus Nat Hist 53:3–308

    Article  Google Scholar 

  • Georgalis GL, Rabi M, Smith KT (2021) Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe. Swiss J Palaeontol 140:18

    Article  Google Scholar 

  • Georgi JA (2008) Semicircular canal morphology as evidence of locomotor environment in amniotes. PhD Thesis. New York: Stony Brook University

    Google Scholar 

  • Georgi JA, Sipla JS (2008) Comparative and functional anatomy of balance in aquatic reptiles and birds. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 233–256

    Google Scholar 

  • Gilmore CW (1943) Fossil lizards of Mongolia. Bull Amer Mus Nat Hist 81:361–384

    Google Scholar 

  • Gisi J (1808) Das Gehirn von Hatteria punctata. Zool Jhb Abt F Anat Ontog 25:71–236

    Google Scholar 

  • Goldby F (1934) The cerebral hemispheres of Lacerta viridis. J Anat 68:157–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldby F, Gamble HJ (1957) The reptilian cerebral hemispheres. Biol Rev 32(4):383–420

    Google Scholar 

  • Gower DJ, Weber E (1998) The braincase of Euparkeria, and the evolutionary relationships of birds andcrocodilians. Biol Rev 73(4):367–411

    Google Scholar 

  • Greenberg N, MacLean PD (1978) Behavior and neurology of lizards, an interdisciplinary colloquium. U.S. Department of health, education, and welfare publication No. (ADM) pp 77–491

    Google Scholar 

  • Greene HW (1997) Snakes. The evolution of mystery in nature. University of California Press, Berkeley

    Google Scholar 

  • Greer AE (1985) The relationships of the lizard genera Anelytropsis and Dibamus. J Herpetol 19:116–156

    Google Scholar 

  • Griffing AH, Sanger TJ, Daza JD et al (2019) Embryonic development of a parthenogenetic vertebrate, the mourning gecko (Lepidodactylus lugubris). Dev Dyn 248:1070–1090

    Article  CAS  PubMed  Google Scholar 

  • Griffiths E, Ford DE, Benson RB Evans SE (2021) New information on the Jurassic lepidosauromorph Marmorettaoxoniensis. Pap Palaeontol 7(4):2255–2278

    Google Scholar 

  • Grigoriev DV, Averianov AO, Arkhangelsky MS et al (2009) A mosasaur from the Cenomanian of Russia. Paleontol J 43(3):311e317

    Google Scholar 

  • Guerra C, Montero R (2009) The skull of Vanzosaura rubricauda (Squamata: Gymnophthalmidae). Acta Zool (Stockholm) 90:359–371

    Article  Google Scholar 

  • Güntürkün O, Stacho M, Strökens F (2017) The brains of reptiles and birds. In: Kaas JH (ed) Evolution of nervous systems, 2nd edn. Elsevier, New York, pp 171–221

    Chapter  Google Scholar 

  • Güntürkün O, Stacho M, Strökens F (2020) The brains of reptiles and birds. In: Kaas JH (ed) Evolutionary neuroscience. Wiley, New York, pp 159–212

    Chapter  Google Scholar 

  • Haas G (1964) Anatomical observations on the head of Liotyphlops albirostris (Typhlopidae, Ophidia). Acta Zool 45:1–62

    Article  Google Scholar 

  • Haas G (1979) On a new snakelike reptile from the lower Cenomanian of ‘Ein Yabrud, near Jerusalem. Bull Mus Natl Hist Nat Paris 4:51–64

    Google Scholar 

  • Haas G (1980a) Remarks on a new ophiomorph reptile from the Lower Cenomanian of Ein Jabrud, Israel. In: Jacobs LL (ed) Aspects of vertebrate history, in Honor of E. H. Colbert. Museum of Northern Arizona Press, Flagstaff, pp 177–192

    Google Scholar 

  • Haas G (1980b) Pachyrhachis problematicus Haas, snakelike Reptile from the lower Cenomanian: ventral view of the skull. Bull Mus Natl Hist Nat Paris 4:87–104

    Google Scholar 

  • Hay JM, Subramanian S, Millar CD et al (2008) Rapid molecular evolution in a living fossil. Trends Genet 24:106–109

    Article  CAS  PubMed  Google Scholar 

  • Hernández Morales C, Peloso PLV, Bolívar García W et al (2018) Skull morphology of the lizard Ptychoglossus vallensis (Squamata: Alopoglossidae) with comments on the variation within Gymnophthalmoidea. Anat Rec 302:1074–1092

    Article  Google Scholar 

  • Herrera-Flores J, Elsler A, Stubs T et al (2021) Slow and fast evolutionary rates in the history of lepidosaurs. Palaentology. https://doi.org/10.1111/pala.12579

  • Hoffstetter R, Rage J-C (1977) Le gisement de vertébrés miocènes de La Venta (Colombie) et sa faune de serpents. Ann Paléontol 63:161–190

    Google Scholar 

  • Holovacs NT, Daza JD, Guerra C et al (2019) You can’t run, but you can hide: the skeleton of the sand-swimmer lizard Calyptommatus leiolepis (Squamata: Gymnophthalmidae). Anat Rec 303:1305–1326

    Article  Google Scholar 

  • Hoops D, Desfilis E, Ullmann JFP et al (2018) A 3D MRI-based atlas of a lizard brain. J Comp Neurol 526:2511–2547

    Article  PubMed  Google Scholar 

  • Hoops D, Weng H, Shaid A et al (2021) A fully segmented 3D anatomical atlas of a lizard brain. Brain Struct Funct 226:1727–1741

    Article  PubMed  Google Scholar 

  • Hopson JA (1979) Paleoneurology. In: Gans C (ed) Biology of the reptilia, vol 9. Academic Press, New York, pp 39–146

    Google Scholar 

  • Houssaye A, Bardet N (2013) A baby mosasauroid (Reptilia, Squamata) from the Turonian of Morocco – Tethysaurus ‘junior’ discovered? Cret Res 46:208–215

    Article  Google Scholar 

  • Hsiou AS (2007) A new Teiidae species (Squamata, Scincomorpha) from the Late Pleistocene of Rio Grande do Sul State, Brazil. Rev Bras Paleontol 10:181–194

    Article  Google Scholar 

  • Hurlburt GR, Ridgely RC, Witmer LM (2013) Relative size of brain and cerebrum in tyrannosaurid dinosaurs: ananalysis using brain-endocast quantitative relationships in extant allligators. In: Parrish, Molnar, Currie, Koppelhus (eds), Tyrannosaurid paleobiology, Indiana University Press, pp 135–154

    Google Scholar 

  • Islam A, Ashiq S (1972) The cranial nerves of Uromastix hardwicki Gray. Biologia 18:51–73

    Google Scholar 

  • Janensch W (1906) Über Archaeophis proavus Mass., eine Schlange aus dem Eocän des Monte Bolca. In: Neumayr M (ed) Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, vol 19. Hansebooks, pp 1–33

    Google Scholar 

  • Jerison HJ (1973) Evolution of the Brain and Intelligence. New York, Academic Press

    Google Scholar 

  • Jiménez-Huidobro P (2016) Phylogenetic and palaeobiogeographical analysis of Tylosaurinae (Squamata: Mosasauroidea). Dissertation, University of Alberta

    Google Scholar 

  • Jiménez-Huidobro P, Caldwell MW (2016) Reassessment and reassignment of the Early Maastrichtian mosasaur Hainosaurus bernardi Dollo, 1885, to Tylosaurus Marsh, 1872. J Vert Paleontol 36(3):e1096275–e1096212

    Article  Google Scholar 

  • Jiménez-Huidobro P, Simões TR, Caldwell MW (2017) Mosasauroids from Gondwanan Continents. J Herpetol 51:355–364

    Article  Google Scholar 

  • Jollie MT (1960) The head skeleton of the lizard. Acta Zool (Stockholm) 41:1–54

    Article  Google Scholar 

  • Jones MEH (2008) Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). J Morphol 269:945–966

    Article  PubMed  Google Scholar 

  • Jones MEH, Curtis N, Fagan MJ et al (2011) Hard tissue anatomy of the cranial joints in Sphenodon (Rhynchocephalia): sutures, kinesis, and skull mechanics. Paleontol Electron 14(2):17A-1-17A-92

    Google Scholar 

  • Jones ME, Anderson CL, Hipsley CA et al (2013) Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 13:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamal AM (1971) On the fissura metotica in Squamata. Bull Zool Soc Egypt 23:53–57

    Google Scholar 

  • Kearney M (2003) Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpetol Monogr 17(1):1–74

    Article  Google Scholar 

  • Kearney M, Maisano JA, Rowe T (2005) Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution X-ray computed tomography. J Morphol 264:1–33

    Article  PubMed  Google Scholar 

  • Kim R, Evans D (2014) Relationships among brain, endocranial cavity, and body sizes in reptiles. Society of Vertebrate Paleontology 74th Annual Meeting, Berlin, Germany.

    Google Scholar 

  • Klembara J, Böhme M, Rummel M (2010) Revision of the anguine lizard Pseudopus laurillardi (Squamata, Anguidae) from the Miocene of Europe, with comments on paleoecology. J Paleontol 84:159–196

    Article  Google Scholar 

  • Kluge AG (1962) Comparative osteology of the eublepharid genus Coleonyx Gray. J Morphol 110:299–332

    Article  Google Scholar 

  • Kluge AG (1967) Higher taxonomic categories of gekkonid lizards and their evolution. Bull Am Mus Nat Hist 135:1–60

    Google Scholar 

  • Kluge AG (1976) Phylogenetic relationships in the lizard family Pygopodidae: an evaluation of theory, methods and data. Misc Publ Mus Zool Univ Mich 152:1–72

    Google Scholar 

  • Konishi T, Caldwell MW (2011) Two new plioplatecarpine (Squamata, Mosasauridae) genera from the Upper Cretaceous of North America, and a global phylogenetic analysis of plioplatecarpines. J Vert Paleontol 31:754–783

    Article  Google Scholar 

  • Konishi T, Caldwell MW, Nishimura T et al (2015) A new halisaurine mosasaur (Squamata: Halisaurinae) from Japan: the first record in the western Pacific realm and the first documented insights into binocular vision in mosasaurs. J Syst Palaeontol. https://doi.org/10.1080/14772019.2015.1113447

  • Laver RJ, Morales CH, Heinicke MP et al (2020) The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko). J Morphol 281:213–228

    Article  PubMed  Google Scholar 

  • Liem KF, Bemis WE, Walker WF, et al (2000) Functional anatomy of the vertebrates: an evolutionary perspective. 3rd ed. Thomson Learning, Belmont

    Google Scholar 

  • Longrich NR, Bhullar B-A S, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci 109:21396–21396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macri S, Savriama Y, Khan I et al (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Comm 10:5560. https://doi.org/10.1038/s41467-019-13405-w

    Article  CAS  Google Scholar 

  • Maisano JA, Kearney M, Rowe T (2005) Cranial anatomy of the spade-headed amphisbaenian Diplometopon zarudnyi (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. J Morphol 267(1):70–102

    Article  Google Scholar 

  • Makádi L, Caldwell MW, Ősi A (2012) The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PLoS One 7(12):e51781

    Article  PubMed  PubMed Central  Google Scholar 

  • Martill DM, Tischlinger H, Longrich NR (2015) A four legged snake from the Early Cretaceous of Gondwana. Nature 349:416–419

    CAS  Google Scholar 

  • Martínez RN, Simões TR, Sobral G et al (2021) A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles. Nature 597:235–238

    Article  PubMed  Google Scholar 

  • McDowell SB (2008) The skull of serpentes. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, Volume 21, Morphology I. Society for the Study of Amphibians and Reptiles, Ithaca, pp 467–620

    Google Scholar 

  • McDowell SB, Bogert CM (1954) The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bull Am Mus Nat Hist 105:1–42

    Google Scholar 

  • Meloro C, Jones ME (2012) Tooth and cranial disparity in the fossil relatives of Sphenodon (Rhynchocephalia) dispute the persistent ‘living fossil’ label. J Evol Biol 25:2194–2209

    Article  PubMed  Google Scholar 

  • Montero R, Gans C (1999) The head skeleton of Amphisbaena alba Linneaus. Ann Carnegie Mus 68:15–80

    Article  Google Scholar 

  • Montero R, Gans C (2008) An atlas of amphisbaenian skull anatomy. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, Vol 21, Morphology I (The Skull and appendicular locomotor apparatus of Lepidosauria). Society for the Study of Amphibians and Reptiles, Ithaca, pp 621–738

    Google Scholar 

  • Montero R, Gans C, Lions ML (1999) Embryonic development of the skeleton of Amphisbaena darwiniheterozonata (Squamata: Amphisbaenidae) J Morphol 239:1–25

    Google Scholar 

  • Montero R, Abdala V, Moro S et al (2004) Atlas de Tupinambis rufescens (Squamata: Teiidae). Anatomía externa, osteología y bibliografía. Cuad Herpetol 18:17–32

    Google Scholar 

  • Montero R, Daza JD, Bauer AM et al (2017) How common are cranial sesamoids among squamates? J Morphol 278:1400–1411

    Article  PubMed  Google Scholar 

  • Motani R (2009) The evolution of marine reptiles. Evol: Educ Outreach 2:224–235

    Google Scholar 

  • Müller J, Hipsley CA, Head JJ et al (2011) Eocene lizard from Germany reveals amphisbaenian origins. Nature 473:364–367

    Article  PubMed  Google Scholar 

  • Müller J, Hipsley CA, Maisano JA (2016) Skull osteology of the Eocene amphisbaenian Spathorhynchus fossorium (Reptilia, Squamata) suggests convergent evolution and reversals of fossorial adaptations in worm lizards. J Anat 229:615–630

    Google Scholar 

  • Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin, pp 158–228

    Chapter  Google Scholar 

  • Northcutt RG (1978) Forebrain and midbrain organization in lizards and its phylogenetic significance. In: Greenberg N, MacLean MPD (eds) Behaviour and neurology of lizards. National Institute of Mental Health, Rockville, pp 11–64

    Google Scholar 

  • Northcutt RG (2002) Understanding vertebrate brain evolution. Integ Comp Biol 42:743–756

    Article  Google Scholar 

  • Northcutt RG (2013) Variation in reptilian brains and cognition. Brain Behav Evol 82:45–54

    Article  PubMed  Google Scholar 

  • O’Donoghue CH (1920) The blood vascular system of the Tuatara, Sphenodon punctatus. Philos Trans R Soc London B 2010:175–125

    Google Scholar 

  • Oelrich TM (1956) The anatomy of the head of Ctenosaura pectinata (Iguanidae). Misc Publ Mus Zool Univ Mich 94:1–122

    Google Scholar 

  • Olori JC (2010) Digital endocasts of the cranial cavity and osseus labyrinth of the burrowing snake Uropeltis woodmansoni (Alethinophidia: Uropeltidae). Copeia 2010:14–26

    Article  Google Scholar 

  • Olori JC, Bell CJ (2012) Comparative skull morphology of uropeltid snakes (Alethinophidia: Uropeltidae) with special reference to disarticulated elements and variation. PLoS ONE 7

    Google Scholar 

  • Palci A, Caldwell MW, Papazzoni CA (2013) A new genus and subfamily of mosasaurs from the Upper Cretaceous of Northern Italy. J Vert Paleontol 33(3):599–612

    Article  Google Scholar 

  • Palci A, Hutchinso MN, Caldwell MW et al (2017) The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. R Soc Open Sci 4:170685

    Article  PubMed  PubMed Central  Google Scholar 

  • Palci A, Hutchinson MN, Caldwell MW et al (2018) Paleoecological inferences for the fossil Australian snakes Yurlunggur and Wonambi (Serpentes, Madtsoiidae). R Soc Open Sci 5(3):172012

    Article  PubMed  PubMed Central  Google Scholar 

  • Paluh DJ, Bauer AM (2017) Comparative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in scincid cranial osteology. PLoS ONE 12:e0184414

    Article  PubMed  PubMed Central  Google Scholar 

  • Panciroli E, Benson RBJ, Walsh SL et al (2020) Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth Environ Sci Trans R Soc Edinb 111:135–156

    CAS  Google Scholar 

  • Páramo-Fonseca ME (2000) Yaguarasaurus columbianus (Reptilia, Mosasauridae), a primitive mosasaur from the Turonian (Upper Cretaceous) of Columbia. Historical Biology 14:121–131

    Article  Google Scholar 

  • Páramo-Fonseca ME (2013) Eonatator coellensis nov. sp. (Squamata: Mosasauridae), a new species from the Upper Cretaceous of Colombia. Revista Acad Colomb Ci Exact 37:499–518

    Google Scholar 

  • Perez-Martinez C, Leal M (2021) Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization. Behaviour 158:1121–1168

    Article  Google Scholar 

  • Peterson EA (1966) Hearing in the lizard: some comments on the auditory capacities of a nonmammalian ear. Herpteologica 22:161–171

    Google Scholar 

  • Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley

    Google Scholar 

  • Platel R (1975) Nouvelles données sur l’encéphalisation des reptiles squamates. Z Zool Syst Evol 13:161–184

    Google Scholar 

  • Platel R (1976) Comparative volumetric analysis of the main subdivisions of the brain in saurian reptiles. J Hirnoforsch 17(6):513–537

    CAS  Google Scholar 

  • Platel R (1989) Anatomy of the brain of the New Zealand Gray Sphenodon punctatus (Sphenodontidae): a quantitative study of the principle subidivions of the brain. J Hirnoforsch 30:325–337

    CAS  Google Scholar 

  • Polcyn MJ (2008) Braincase evolution in plioplatecarpine mosasaurs. J Vert Pal 28(Suppl.3):128A

    Google Scholar 

  • Polcyn MJ (2010) Sensory adaptations in mosasaurs. J Vert Paleontol 30(Suppl 3):146A

    Google Scholar 

  • Polcyn MJ, Bell GL Jr (2005) Russellosaurus coheni n. gen., n. sp., a 92 million- year-old mosasaur from Texas (U.S.A.), and the definition of the parafamily Russellosaurina. Neth J Geosci 84:321–333

    Google Scholar 

  • Polcyn MJ, Jacobs LL et al (2014) Physical drivers of mosasaur evolution. Palaeogeogr Palaeoclimatol Palaeoecol 400:17–27

    Article  Google Scholar 

  • Porter WR, Witmer LM (2015) Vascular patterns in Iguanas and other squamates: blood vessels and sites of thermal exchange. PLoS One 10:e0139215

    Article  PubMed  PubMed Central  Google Scholar 

  • Pough FH, Andrews RM, Crump ML et al (2016) Herpetology, 4th ed,Sinauer Associates, Massachusetts

    Google Scholar 

  • Pratt CW (1948) The morphology of the ethmoidal region of Sphenodon and lizards. Proc Zool Soc Lon 118:171–201

    Article  Google Scholar 

  • Pyron RA (2017) Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst Biol 66:38–56

    PubMed  Google Scholar 

  • Quadros AB, Chafrat P, Zaher H (2018) A new teiid lizard of the genus Callopistes Gravenhorst, 1838 (Squamata, Teiidae), from the Lower Miocene of Argentina. J Vert Paleontol 38:e1484754

    Article  Google Scholar 

  • Rage J-C (1976) Les squamates du Miocène de Beni Mellal, Maroc. Géol Méditerranéenne 3:57–70

    Article  Google Scholar 

  • Rage J-C, Escuillié F (2000) Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. C R Acad Sci Paris 330:513–520

    Google Scholar 

  • Range JC, Bailon S (2005) Amphibians and squamate reptiles from the late early Miocene (MN 4) of Béon 1(Montréal-du-Gers, southwestern France). Geodiversitas 27:413–441

    Google Scholar 

  • Reeder TW, Townsend TM, Mulcahy DG et al (2015) Integrated analyses resolve conflicts over squamate eeptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE:10

    Google Scholar 

  • Renesto S, Bernardi M (2014) Redescription and phylogeneticrelationships of Megachirella wachtleri Renesto et Posenato, 2003 (Reptilia, Diapsida). Paläontol Zeitsch 88:197–210

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere, vol 1. Samson and Wallin, Stockholm

    Google Scholar 

  • Reynoso V-H (1998) Huehuecuetzpalli mixtecus gen. et sp. nov: a basal squamate (Reptilia) from the Early Cretaceous of Texepi de Rodríguez, Central Mexico. Phil Trans R Soc Lon B 353:477–500

    Article  PubMed Central  Google Scholar 

  • Rieppel O (1979a) The braincase of Typhlops and Leptotyphlops (Reptilia: Serpentes). Zool J Linn Soc 65:161–176

    Article  Google Scholar 

  • Rieppel O (1979b) The evolution of the basicranium in the Henophidia (Reptilia: Serpentes). Zool J Linn Soc 66:411–431

    Article  Google Scholar 

  • Rieppel O (1980) The phylogeny of anguinomorph lizards. Naturforschenden Gesellshaft, Basel

    Book  Google Scholar 

  • Rieppel O (1981) The skull and jaw adductor musculature in some burrowing scincomorph lizards of the genera Acontias, Typhlosaurus and Feylinia. J Zool 195:493–528

    Article  Google Scholar 

  • Rieppel O (1984a) The cranial morphology of the fossorial lizard genus Dibamus with a consideration of its phylogenetic relationships. J Zool 204:289–327

    Article  Google Scholar 

  • Rieppel O (1984b) The structure of the skull and jaw adductor musculature of the Gekkota, with comments on the phylogenetic relationships of the Xantusiidae (Reptilia: Lacertilia). Zool J Linn Soc 82:291–318

    Article  Google Scholar 

  • Rieppel O (1993) Patterns of diversity in the reptilian skull. In: Hanken J, Hall BK (eds) The skull. The University of Chicago Press, Chicago, pp 344–390

    Google Scholar 

  • Rieppel O, Head JJ (2004) New specimens of the fossil snake genus Eupodophis Rage & Escuillié, from Cenomanian (Late Cretaceous) of Lebanon. Mem Soc Sci Nat Mus Civ Stor Nat Milano 32:1–26

    Google Scholar 

  • Rieppel O, Zaher H (2000) The braincase of mosasaurs and Varanus, and the relationships of snakes. Zool J Linn Soc 129:489–514

    Article  Google Scholar 

  • Rieppel O, Kluge AG, Zaher H (2002) Testing the phylogenetic relationships of the Pleistocene snake Wonambi naracoortensis Smith. J Vert Paleontol 22:812–829

    Article  Google Scholar 

  • Rieppel O, Kley NJ, Maisano JA (2009) Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). J Morphol 270:536–557

    Article  PubMed  Google Scholar 

  • Romer AS (1956) Osteology of the Reptiles. Chicago, University of Chicago Press

    Google Scholar 

  • Roscito JG, Rodrigues MT (2010) Comparative cranial osteology of fossorial lizards from the tribe Gymnophthalmini (Squamata, Gymnophthalmidae). J Morphol 271:1352–1365

    Article  PubMed  Google Scholar 

  • Ross CF, Sues H-D, Klerk WJ (1999) Lepidosaurian remains from the Lower Cretaceous Kirkwood Formation of South Africa. J Vert Paleontol 19:21–27

    Article  Google Scholar 

  • Russell DA (1967) Systematics and morphology of American mosasaurs. Bull Peabody Mus Nat Hist 23:1–241

    Google Scholar 

  • Sánchez-Martínez PM, Daza JD, Hoyos JM (2021) Comparative anatomy of the middle ear in some lizard species with comments on the evolutionary changes within Squamata. Peer J 9

    Google Scholar 

  • Säve-Söderbergh G (1947) Notes on the brain-case in Sphenodon and certain Lacertilia. Zool Bidr Uppsala 25:489–516

    Google Scholar 

  • Scanferla A, Smith KT (2020a) Additional anatomical information on the Eocene minute boas Messelophis variatus and Rieppelophis ermannorum (Messel Formation, Germany). Vertebr Zool 70:615–620

    Google Scholar 

  • Scanferla A, Smith KT (2020b) Exquisitely preserved fossil snakes of Messel: insight into the evolution, biogeography, habitat preferences and sensory ecology of Early boas. Diversity 12:100. https://doi.org/10.3390/d12030100

    Article  Google Scholar 

  • Scanferla A, Zaher H, Novas F, de Muizon C, Céspedes R (2013) A new snake skull from the Paleocene of Bolivia sheds light on the evolution of macrostomatans. Plos One 8:e57583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanferla A, Smith KT, Schaal SFK (2016) Revision of the cranial anatomy and phylogenetic relationships of the Eocene minute boas Messelophis variatus and Messelophis ermannorum (Serpentes, Booidea). Zool J Linn Soc 176:182–206

    Article  Google Scholar 

  • Scanlon JD (2003) The basicranial morphology of madtsoiid snakes (Squamata, Ophidia) and the earliest Alethinophidia (Serptentes). J Vert Paleontol 23:971–976

    Article  Google Scholar 

  • Scanlon JD (2005) Cranial morphology of the Plio-Pleistocene giant madtsoiid snake Wonambi naracoortensis. Acta Palaeontol Pol 50:139–180

    Google Scholar 

  • Scanlon JD (2006) Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature 439:839–842

    Article  CAS  PubMed  Google Scholar 

  • Scanlon JD, Lee MSY (2000) The Pleistocene serpent Wonambi and the early evolution of snakes. Nature 403

    Google Scholar 

  • Schmidt RS (1964) Phylogenetic significance of lizard cochlea. Copeia 3:542–549

    Article  Google Scholar 

  • Schoch RR, Sues H-D (2018) A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany andits phylogenetic relationships. J Vertebr Paleontol 38:e1444619

    Google Scholar 

  • Schwenk K (2000) Feeding in lepidosaurs. In: Schwenk (ed), Feeding. California, Academic Press, pp 175–291

    Google Scholar 

  • Segall M, Cornette R, Rasmussen AR et al (2021) Inside the head of snakes: influence of size, phylogeny, andsensory ecology on endocranium morphology. Brain Struct Func 226:2401–2415

    Google Scholar 

  • Shanklin WM (1930) The central nervous system of Chameleo vulgaris. Acta Zool (Stockholm) 11:425–490

    Article  Google Scholar 

  • Shute CCD, Bellairs AA (1953) The cochlear apparatus of Geckonidae and Pygopodidae and its bearing on the affinities of these groups of lizards. Proc Zool Soc Lon 123:695–708

    Article  Google Scholar 

  • Sienbenrock F (1893) Das Skelet von Uroplates fimbriatus Schneid. Ann K K Naturhist Hoormus ien 8:517–536

    Google Scholar 

  • Simões TR, Pyron RA (2021) The squamate tree of life. Bull Mus Comp Zool 163:1–95

    Article  Google Scholar 

  • Simões TR, Caldwell MW, Talanda M et al (2018) The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557:706–709

    Article  PubMed  Google Scholar 

  • Simões TR, Vernygora O, Caldwell MW et al (2020) Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat Commun 11:3322. https://doi.org/10.1038/s41467-020-17190-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeets WJA, Hoogland PV, Lohman AH (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254:1–19

    Article  CAS  PubMed  Google Scholar 

  • Smith KT (2009) Eocene Lizards of the clade Geiseltaliellus from Messel and Geiseltal, Germany, and the early radiation of Iguanidae (Reptilia: Squamata). Bull Peabody Mus Nat Hist 50(2):219–306

    Article  Google Scholar 

  • Smith KT, Bullar B-AS, Köhler et al (2018) The only known jawed vertebrate with four eyes and the bauplan of the pineal complex. Curr Biol 28(7):1101-1107.e2

    Google Scholar 

  • Smith KT, Habersetzer J (2021) The anatomy, phylogenetic relationships, and autecology of the carnivorous lizard “Saniwafeisti Stritzke, 1983 from the Eocene of Messel, Germany. C R Palevol 20(23):441–506

    Google Scholar 

  • Smith KT, Scanferla A (2021) A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany). Geodiversitas 43:1–24

    Article  Google Scholar 

  • Sobral G, Simões TR, Schoch RR (2020) A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellbert fauna. Sci Rep 10:2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starck D (1979) Cranio-cerebral relations in recent reptiles. In: Gans AC, Northcutt RG, Ulinski P (eds) Biology of the reptilia, Vol 9, Neurology. Academic Press, London, pp 1–36

    Google Scholar 

  • Stepanova N, Bauer AM (2021) Phylogenetic history influences convergence for a specialized ecology: comparative skull morphology of African burrowing skinks (Squamata; Scincidae). BMC Ecol Evol 21:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker MR, Kirk EC (2016) The first amphisbaenians from Texas, with notes on other squamates from the middle Eocene Purple Bench Locality. J Vert Paleontol 36(3):e1094081

    Article  Google Scholar 

  • Strong CRC, Palci A, Caldwell MW (2020) Insights into skull evolution infossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea). J Anat 238:146–172

    Google Scholar 

  • Sues H-D (2019) The rise of reptiles: 320 million years of evolution. Page 1 online resource. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Sues H-D, Reisz RT (1995) First record of the early Mesozoic sphenodontian Clevosarus (Lepidosauria: Rhynchocephalia) from the Southern Hemisphere. J Paleontol 69:123–126

    Article  Google Scholar 

  • Sulimski A (1975) Macrocephalosauridae and Polyglyphanodontidae (Sauria) from the Late Cretaceous of Mongolia. Acta Paleont Pol 33:25–102

    Google Scholar 

  • Szyndlar Z (1985) Ophidian fauna (Reptilia, Serpentes) from the uppermost Miocene of Algora (Spain). Estudios geol 41:447–465

    Article  Google Scholar 

  • Szyndlar Z (1988) Two new extinct species of the genera Malpolon and Vipera (Reptilia, Serpentes) from the Pliocene of Layna Spain. Acta Zool Cracov 31:687–706

    Google Scholar 

  • Szyndlar Z (1991) Ancestry of the Grass Snake (Natrix natrix): paleontological evidence. J Herpetol 25:412–418

    Article  Google Scholar 

  • Szyndlar Z, Zarova GA (1990) Neogene Cobras of the genus Naja (Serpentes: Elapidae) of East Europe. Ann Naturhist Mus Wien 91:53–61

    Google Scholar 

  • Tatarinov LP (1988) The cranial structure of the lower Eocene sea snake “Archaeophisturkmenicus from Turkmenia. Paleontol J 22:73–79

    Google Scholar 

  • Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL (2000) A fossil snake with limbs. Science 287:2010–2012

    Article  CAS  PubMed  Google Scholar 

  • Triviño LN, Albino AM, Dozo MT et al (2018) First natural endocranial cast of a fossil snake (Cretaceous of Patagonia, Argentina). Anat Rec 301:9–20

    Article  Google Scholar 

  • Uetz P, Freed P, JHTR Database (2022). http://www.reptile-database.org. Accessed 06 Sept 2022

  • Underwood G (1957) On lizards of the family Pygopodidae. A contribution to the morphology and phylogeny of the Squamata. J Morphol 100:207–268

    Article  Google Scholar 

  • Underwood G (1967) A contribution to the classification of snakes. British Museum of Natural History, London

    Google Scholar 

  • Versluys J (1898) Die mittlere und äussere Ohrsphäre der Lacertilia und Rhynchocephalia, Inaugural Disseration Universität Giessen. Gustav Fischer, Jena.

    Google Scholar 

  • Vidal N, Hedges SB (2005) The phylogeny of squamate reptiles (lizards, snakes and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 328:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Villa AJ, Abella DM, Alba S et al (2018) Revision of Varanus marathonensis (Squamata, Varanidae) based on historical and new material: morphology, systematics, and paleobiogeography of the European monitor lizards. PLoS ONE 13(12):e0207719

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitt LJ, Caldwell JP (2013) Herpetology: an introductory Biology of Amphibiansand reptiles. 4th ed. Academic Press

    Google Scholar 

  • Watanabe A, Gignac PM, Balanoff AM, Green TL, Kley NJ, Norell MA (2019) Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? J Anat 234(3):291–305

    Article  PubMed  Google Scholar 

  • Watkinson GB (1906) The cranial nerves of Varanus bivittatus. Ge-genbauers Morph Jahrb 35:450–472

    Google Scholar 

  • Weber EG (1978) The reptile ear: its structure and function. Princeton University Press, Princeton

    Google Scholar 

  • Werneburg I, Sánchez-Villagra MR (2015) Skeletal heterochrony is associated with the anatomical specialization of snakes among squamate reptiles. Evolution 69:254–263

    Article  PubMed  Google Scholar 

  • Whiteside DI (1986) The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov., and the modernising of a living fossil. Phil Trans R Soc B 312(1156):379–430

    Google Scholar 

  • Wiens JJ, Kuczynski CA, Townsend TM et al (2010) Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst Biol 59:674–688

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ, Hutter CR, Mulcahy DG et al (2012) Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 8(6):1043–1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Willard WA (1915) The cranial nerves of Anolis carolinensis. Bull Mus Comp Zool Harv 59:18–116

    Google Scholar 

  • Wilson JA, Mohabey DM, Peters SE, Head JJ (2010) Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biol 8:e1000322

    Article  PubMed  PubMed Central  Google Scholar 

  • Witmer LM (1995) The extant phylogenetic bracket and the importance ofreconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. New York, Cambridge University Press, pp 19–33

    Google Scholar 

  • Witmer LM, Ridgely RC, Dufeau DL et al (2008) Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In: Endo H, Frey R (eds) Anatomical imaging: towards a new morphology. Springer, Tokyo, pp 67–88

    Chapter  Google Scholar 

  • Wood PL, Guo X, Travers SL et al (2020a) Corrigendum to “Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements”. Mol Phylogenet Evol 146:106731

    Article  PubMed  Google Scholar 

  • Wood PL, Guo X, Travers SL et al (2020b) Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements. Mol Phylogenet Evol 146:107255

    Article  Google Scholar 

  • Wu X, Brinkman D, Russell A et al (1993) Oldest known amphisbaenian from the Upper Cretaceous of Chinese Inner Mongolia. Nature 366:57–59

    Article  Google Scholar 

  • Wyeth FJ (1924) The development of the auditory apparatus in Sphenodon punctatus with an account of the visceral pouches, aortic arches, and other accessory structures. Phil Trans R Soc Lon (B) 212:259–368

    Google Scholar 

  • Wyneken J (2007) Reptilian neurology: anatomy and function. Vet Clin Exot Anim 10:837–853

    Article  Google Scholar 

  • Wyeth FJ (1920) On the development of the auditory apparatus in Sphenodonpunctatus. Procc Roy Soc Lon B 91(639):224–228

    Google Scholar 

  • Xing L, O’Connor JK, Schmitz L et al (2020) Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature 579:245–249

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Norell MA (2015) The burrowing origin of modern snakes. Sci Adv 1:e1500743

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi H, Norell MA (2018) The bony labyrinth of Platecarpus (Squamata: Mosasauria) and aquatic adaptations in squamate reptiles. Palaeoworld. https://doi.org/10.1016/j.palwor.2018.12.001

  • Yi H, Norell M (2013) New Materials of Estesia mongoliensis (Squamata: Anguimorpha) and the Evolution of Venom Grooves in Lizards. Am Mus Nov 3767:1–31

    Google Scholar 

  • Yi H, Sampath D, Schoenfeld S et al (2012) Reconstruction of inner ear shape and size in mosasaurs (Reptilia: Squamata) reveals complex adaptation strategies in secondary aquatic reptiles. J Vert Paleontol 32:198A

    Google Scholar 

  • Young BA (1987) The cranial nerves of three species of sea snakes. Can J Zool 65(9). https://doi.org/10.1139/z87-338

  • Zaher H, Scanferla CA (2012) The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zool J Linn Soc 164:194–238

    Article  Google Scholar 

  • Zaher H, Smith KT (2020) Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biol Lett 16:20200735

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaher H, Apesteguía S, Scanferla CA (2009) The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zool J Linn Soc 156:801–826

    Article  Google Scholar 

  • Zaher H, Mohabey DM, Grazziotin FG et al (2022a) The skull of Sanajeh indicus, a Cretaceous snake with an upper temporal bar, and the origin of ophidian wide-gaped feeding. Zool J Linn Soc

    Google Scholar 

  • Zaher H, Augusta BG, Rabinovich R et al (2022b) A review of the skull anatomy and phylogenetic affinities of marine pachyophiid snakes. In: Gower DJ, Zaher H (eds) The origin and early evolution of snakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Zheng Y, Wiens JJ (2016) Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phil Evol 94:537–547

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Evans for advice on identification of braincase structures; J. Gray for the DICECT scans, and M. Everhart from the Fort Hays Sternberg Museum for permissions to use a figure from the Oceans of Kansas Paleontology website. Funding: PICT-2020-SERIEA-01428 (to APC), Alexander von Humboldt Postdoctoral Fellowship (to PJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariana Paulina-Carabajal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paulina-Carabajal, A., Jiménez-Huidobro, P., Triviño, L.N., Stanley, E.L., Zaher, H., Daza, J.D. (2023). A Look in to the Neurocranium of Living and Extinct Lepidosauria. In: Dozo, M.T., Paulina-Carabajal, A., Macrini, T.E., Walsh, S. (eds) Paleoneurology of Amniotes . Springer, Cham. https://doi.org/10.1007/978-3-031-13983-3_5

Download citation

Publish with us

Policies and ethics