Skip to main content

Early Evolution of the Brain in Primates and Their Close Kin

  • 282 Accesses

Abstract

The interpretation of early primate endocasts can be framed around four critical questions: (1) What are accurate estimates of endocranial capacity for known euprimate specimens? (2) What does the available data for stem primates tell us with respect to the earliest phases of primate brain evolution? (3) How should relative brain size be assessed? and (4) What is the appropriate comparative context for interpreting fossil primate endocasts? The widespread availability of CT data has allowed for better estimates of endocranial volume (#1), and for more data from stem primates (#2). From these data it is clear that the earliest primates had brains that were little differentiated in terms of form or size from their ancestors, although there might have been some modest increase in the relative size of the neocortex. Major changes in shape occurred at the euprimate node, with expansions in the temporal and occipital lobes (reflected in an expanded neocortex), and a lack of expansion in the olfactory bulbs. The brain of early fossil euprimates nonetheless still displayed primitive features such as narrow frontal lobes. Questions #3 and #4 remain contentious, although a much-expanded comparative sample of fossil endocasts allows for new perspectives on these issues.

Keywords

  • Plesiadapiforms
  • Adapoids
  • Omomyoids
  • Euprimates
  • Neocortex
  • Virtual endocast

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-13983-3_12
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-13983-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6

References

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis. Curr Anthropol 36:199–221

    CrossRef  Google Scholar 

  • Allen KL (2014) Endocranial volume and shape variation in early anthropoid evolution. Duke University, Doctoral dissertation

    Google Scholar 

  • Ankel-Simons F, Rasmussen DT (2008) Diurnality, nocturnality, and the evolution of primate visual systems. Am J Phys Anth 137(S47):100–117

    CrossRef  Google Scholar 

  • Baab KL, Perry JM, Rohlf FJ et al (2014) Phylogenetic, ecological, and allometric correlates of cranial shape in Malagasy Lemuriformes. Evolution 68:1450–1468

    CrossRef  PubMed  Google Scholar 

  • Baron G, Frahm HD, Bhatnagar KP et al (1983) Comparison of brain structure volumes in Insectivora and Primates. III. Main olfactory bulb (MOB). J Hirnforschung 24:551

    CAS  Google Scholar 

  • Barton RA (1996) Neocortex size and behavioural ecology in primates. Proc Roy Soc B-Biol Sci 263:173–177

    CrossRef  CAS  Google Scholar 

  • Barton RA (1998) Visual specialization and brain evolution in primates. Proc Roy Soc B-Biol Sci 265:1933–1937

    CrossRef  CAS  Google Scholar 

  • Barton RA (2000) Primate brain evolution: cognitive demands of foraging or of social life. In: Boinski S, Garber PA (eds) On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 204–237

    Google Scholar 

  • Barton RA (2006) Olfactory evolution and behavioral ecology in primates. Am J Primatol 68:545–558

    CrossRef  PubMed  Google Scholar 

  • Barton RA (2012) Embodied cognitive evolution and the cerebellum. Phil Trans R Soc B 367:2097–2107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Phil Trans R Soc B 348:381–392

    CrossRef  PubMed  CAS  Google Scholar 

  • Beard KC (2008) The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA 105:3815–3818

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Beaudet A, Gilissen E (2018) Fossil primate endocasts: perspectives from advanced imaging techniques. In: Bruner E, Ogihara N, Tanabe H (eds) Digital endocasts. Springer, Tokyo, pp 47–58

    CrossRef  Google Scholar 

  • Beaudet A, Domuncel J, de Beer F et al (2016) Morphoarchitectural variation in South African fossil cercopithecoid endocasts. J Hum Evol 101:65–78

    CrossRef  PubMed  Google Scholar 

  • Begun DR, Kordos L (2004) Cranial evidence of the evolution of intelligence in fossil apes. In: Russon AE, Begun DR (eds) The evolution of thought: evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 260–279

    CrossRef  Google Scholar 

  • Bernardi M, Couette S (2017) Eocene paleoecology of Adapis parisiensis (primate, Adapidae): from inner ear to lifestyle. Anat Rec 300:1576–1588

    CrossRef  Google Scholar 

  • Bertrand OC, Silcox MT (2016) First virtual endocasts of a fossil rodent: Ischyromys typus (Ischyromyidae, Oligocene) and brain evolution in rodents. J Vert Paleontol 36:e1095762

    CrossRef  Google Scholar 

  • Bertrand OC, Amador-Mughal F, Silcox MT (2016) Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires. Proc Roy Soc B-Biol Sci 283:20152316

    CrossRef  Google Scholar 

  • Bertrand OC, Amador-Mughal F, Silcox MT (2017) Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. J Anat 230:128–151

    CrossRef  PubMed  Google Scholar 

  • Bertrand OC, Amador-Mughal F, Lang MM et al (2018) Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality. Palaeontology 61:919–948

    CrossRef  Google Scholar 

  • Bertrand OC, Amador-Mughal F, Lang MM et al (2019a) New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia. J Mamm Evol 26:345–371

    CrossRef  Google Scholar 

  • Bertrand OC, San Martin-Flores G, Silcox MT (2019b) Endocranial shape variation in the squirrel-related clade and their fossil relatives using 3D geometric morphometrics: contributions of locomotion and phylogeny to brain shape. J Zool 308:197–211

    CrossRef  Google Scholar 

  • Bertrand OC, Püschel HP, Schwab JA, Silcox MT, Brusatte SL (2021) The impact of locomotion on the brain evolution of squirrels and close relatives. Comm Biol 4:460

    CrossRef  Google Scholar 

  • Bhagat R, Bertrand OC, Silcox MT (2020) Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents. J Anat 238:96–112

    CrossRef  PubMed  Google Scholar 

  • Bloch JI, Silcox MT (2006) Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. J Hum Evol 50:1–35

    CrossRef  PubMed  Google Scholar 

  • Bloch JI, Boyer DM, Silcox MT et al (2004) New skeletons of Paleocene-Eocene Labidolemur kayi (Mammalia, Apatemyidae): ecomorphology and relationship of apatemyids to Primates and other mammals. J Vert Paleontol 24(Suppl. 3):40A

    Google Scholar 

  • Bloch JI, Silcox MT, Boyer DM et al (2007) New Paleocene skeletons and the relationship of “plesiadapiforms” to crown-clade primates. Proc Natl Acad Sci USA 104:1159–1164

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Boddy AM, McGowen MR, Sherwood CC et al (2012) Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J Evol Biol 25:981–994

    CrossRef  PubMed  CAS  Google Scholar 

  • Boyer DM, Gingerich PD (2019) Skeleton of Late Paleocene Plesiadapis cookei (Mammalia, Euarchonta): life history, locomotion, and phylogenetic relationships. Univ Mich Pap Paleontol 38:1–269

    Google Scholar 

  • Boyer DM, Silcox MT, Bloch JI et al (2011) New skull and associated postcrania of Ignacius graybullianus (Mammalia, ?Primates) from the Eocene of Wyoming. J Vertebr Paleontol 76A

    Google Scholar 

  • Boyer DM, Kirk EC, Silcox MT et al (2016) Internal carotid arterial canal size and scaling in Euarchonta: Re-assessing implications for arterial patency and phylogenetic relationships in early fossil primates. J Hum Evol 97:123–144

    CrossRef  PubMed  Google Scholar 

  • Bronson RT (1981) Brain weight-body weight relationships in 12 species of nonhuman primates. Am J Phys Anthrop 56:77–81

    CrossRef  Google Scholar 

  • Bugge J (1974) The cephalic arterial system in insectivores, primates, rodents and lagomorphs, with special reference to the systematic classification. Acta Anat 87(Suppl 62):1–160

    CrossRef  Google Scholar 

  • Burger JR, George MA Jr, Leadbetter C et al (2019) The allometry of brain size in mammals. J Mammal 100:276–283

    CrossRef  Google Scholar 

  • Bush EC, Simons EL, Dubowitz DJ et al (2004a) Endocranial volume and optic foramen size in Parapithecus grangeri. In: Ross CF, Kay RF (eds) Anthropoid origins: new visions. Kluwer, Boston, pp 603–614

    CrossRef  Google Scholar 

  • Bush EC, Simons EL, Allman JM (2004b) High-resolution computed tomography study of the cranium of a fossil anthropoid primate, Parapithecus grangeri: new insights into the evolutionary history of primate sensory systems. Anat Rec 281:1083–1087

    CrossRef  Google Scholar 

  • Butler H (1967) The development of mammalian dural venous sinuses with special reference to the post-glenoid vein. J Anat 102(Pt 1):33–56

    PubMed  PubMed Central  CAS  Google Scholar 

  • Byrne H, Lynch-Alfaro JW, Sampaio I et al (2018) Titi monkey biogeography: parallel Pleistocene spread by Plecturocebus and Cheracebus into a post-Pebas western Amazon. Zool Scr 47:499–517

    CrossRef  Google Scholar 

  • Cartmill M (1975) Strepsirhine basicranial structures and the affinities of the Cheirogaleidae. In: Luckett WP, Szalay FA (eds) Phylogeny of the Primates: a multidisciplinary approach. Plenum, New York, pp 313–354

    CrossRef  Google Scholar 

  • Chester SG, Williamson TE, Bloch JI et al (2017) Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene. Roy Soc Open Sci 4:170329

    CrossRef  Google Scholar 

  • Chester SG, Williamson TE, Silcox MT et al (2019) Skeletal morphology of the early Paleocene plesiadapiform Torrejonia wilsoni (Euarchonta, Palaechthonidae). J Hum Evol 128:76–92

    CrossRef  PubMed  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool 190:309–323

    CrossRef  Google Scholar 

  • Conroy G, Packer D (1981) The anatomy and phylogenetic significance of the carotid arteries and nerves in strepsirhine primates. Folia Primatol 35:237–247

    CrossRef  CAS  Google Scholar 

  • Conroy GC, Wible JR (1978) Middle ear morphology of Lemur variegatus. Folia Primatol 29:81–85

    CrossRef  CAS  Google Scholar 

  • Cope ED (1884) The Vertebrata of the Tertiary formations of the West. Report of the United States Geological Survey of the Territories vol. 3

    Google Scholar 

  • Cope (ed) (1885) The Lemuroidea and the Insectivora of the Eocene period of North America. Am Nat 19:457–471

    Google Scholar 

  • Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J Sci 40:219–259

    Google Scholar 

  • Czyżewska T (1985) Natural endocranial casts of Hypolagus brachygnathus Kormos, 1934 (Leporidae, Lagomorpha) from Węże I near Działoszyn. Acta Zool Crac 29:1–12

    Google Scholar 

  • DeCasien AR, Higham JP (2019) Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat Ecol Evol 3:1483–1493

    CrossRef  PubMed  Google Scholar 

  • DeCasien AR, Williams SA, Higham JP (2017) Primate brain size is predicted by diet but not sociality. Nat Ecol Evol 1:0112

    CrossRef  Google Scholar 

  • Dechaseaux C (1958) Encéphales de Simplicidentés fossiles. In: Piveteau J (ed) Traité de paléontologie: L’origine des mammifères et les aspects fondamentaux de leur évolution. 2. v. Masson, Paris, pp 819–821

    Google Scholar 

  • Dozo MT (1997a) Paleoneurología de Dolicavia minuscula (Rodentia, Caviidae) y Paedotherium insigne (Notoungulata, Hegetotheriidae) del Plioceno de Buenos Aires, Argentina. Ameghiniana 34:427–435

    Google Scholar 

  • Dozo MT (1997b) Primer estudio paleoneurológico de un roedor caviomorfo (Cephalomyidae) y sus posibles implicancias filogenéticas. Mastozoología Neotropical 4:89–96

    Google Scholar 

  • Dozo MT, Vucetich MG, Candela AM (2004) Skull anatomy and neuromorphology of Hypsosteiromys, a Colhuehuapian erethizontid rodent from Argentina. J Vert Paleontol 24:228–234

    CrossRef  Google Scholar 

  • Dumont ER, Ryan TM, Godfrey LR (2011) The Hadropithecus conundrum reconsidered, with implications for interpreting diet in fossil hominins. Proc Roy Soc B-Biol Sci 278:3654–3661

    CrossRef  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthrop 6:178–190

    CrossRef  Google Scholar 

  • Dunbar RIM, Schultz S (2007) Understanding primate brain evolution. Phil Trans R Soc B 362:649–658

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Edinger T (1929) Die fossilen Gehirne. Zeitschrift für die gesamte Anatomie 28:1–221

    Google Scholar 

  • Edinger T (1964) Midbrain exposure and overlap in mammals. Am Zool 4:5–19

    CrossRef  PubMed  CAS  Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Elliot Smith G (1902) On the morphology of the brain in Mammalia, with special reference to that of lemurs, recent and extinct. Trans Linn Soc Lond (Zool.) 8:319–432

    CrossRef  Google Scholar 

  • Elliot-Smith G (1927) The evolution of man. Oxford University Press, London

    Google Scholar 

  • Falk D (2007) Evolution of the primate brain. In: Henke W, Tattersall I (eds) Handbook of Paleoanthropology, vol 2. Springer, Heidelberg, pp 1133–1162

    CrossRef  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47

    CrossRef  PubMed  CAS  Google Scholar 

  • Ferreira JD, Negri FR, Sánchez-Villagra MR et al (2020) Small within the largest: brain size and anatomy of the extinct Neoepiblema acreensis, a giant rodent from the Neotropics. Biol Lett 16(2):20190914

    CrossRef  PubMed Central  Google Scholar 

  • Fleagle JG (2013) Primate adaptation and evolution, 3rd edn. Academic Press, New York

    Google Scholar 

  • Fox RC, Scott CS (2011) A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada. J Paleontol 85:537–548

    CrossRef  Google Scholar 

  • Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforschung 23:375–389

    CAS  Google Scholar 

  • Gazin CL (1965) An endocranial cast of the Bridger Middle Eocene primate Smilodectes gracilis. Smithsonian Misc Coll 149:1–14

    Google Scholar 

  • Gibson KR (1986) Cognition, brain size and the extraction of embedded food sources. In: Else JG, Lee P (eds) Primate ontogeny, cognition and social behaviour. Cambridge University Press, Cambridge, pp 93–104

    Google Scholar 

  • Gilbert CC, Jungers WL (2017) Comment on relative brain size in early primates and the use of encephalization quotients in primate evolution. J Hum Evol 109:79–87

    CrossRef  PubMed  Google Scholar 

  • Gingerich PD (1976) Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Univ Michigan Pap Paleontol 15:1–141

    Google Scholar 

  • Gingerich PD, Gunnell GF (2005) Brain of Plesiadapis cookei (Mammalia, Proprimates): surface morphology and encephalization compared to those of Primates and Dermoptera. Contrib Univ Mich Herb 31:185–195

    Google Scholar 

  • Gingerich PD, Martin RD (1981) Cranial morphology and adaptations in Eocene Adapidae. II. The Cambridge skull of Adapis parisiensis. Am J Phys Anthrop 56:235–257

    CrossRef  Google Scholar 

  • Gingerich PD, Franzen JL, Habersetzer J et al (2010) Darwinius masillae is a Haplorhine—Reply to Williams et al., 2010. J Hum Evol 59:574–579

    CrossRef  Google Scholar 

  • Glendenning KK, Masterton RB (1998) Comparative morphometry of mammalian central auditory systems: variation in nuclei and form of the ascending system. Brain Behav Evol 51:59–89

    CrossRef  PubMed  CAS  Google Scholar 

  • Godinot M, Couette S (2008) Morphological diversity in the skulls of large adapines (Primates, Adapiformes) and its systematic implications. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology. Springer, Dordrecht, pp 285–313

    CrossRef  Google Scholar 

  • Gonzales LA, Benefit BR, McCrossin ML et al (2015) Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys. Nat Comm 6:1–9

    CrossRef  Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–524

    Google Scholar 

  • Gregory WK (1920) On the structure and relationships of Notharctus, an American Eocene primate. Mem Bull Am Mus Nat Hist 3:49–243

    Google Scholar 

  • Gudde RM, Joy JB, Mooers AO (2013) Imperilled phylogenetic endemism of Malagasy lemuriformes. Divers Distrib 19:664–675

    CrossRef  Google Scholar 

  • Gunz P, Kozakowski S, Neubauer S et al (2020) Skull reconstruction of the late Miocene ape Rudapithecus hungaricus from Rudabánya, Hungary. J Hum Evol 138:102687

    CrossRef  PubMed  Google Scholar 

  • Gurche JA (1982) Early Primate Brain Evolution. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Springer US, Boston, pp 227–246

    CrossRef  Google Scholar 

  • Guy F, Lieberman DE, Pilbeam D et al (2005) Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium. Proc Natl Acad Sci USA 102:18836–18841

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrington AR, Silcox MT, Yapuncich GS et al (2016) First virtual endocasts of adapiform primates. J Hum Evol 99:52–78

    CrossRef  PubMed  Google Scholar 

  • Harrington AR, Yapuncich GS, Boyer DM (2020) The digital endocast of Necrolemur antiquus. Palaeovertebrata 43(2):e1. https://doi.org/10.18563/pv.43.2.e1

    CrossRef  Google Scholar 

  • Harvati K, Frost S (2007) Dental eruption sequences in fossil colobines and the evolution of primate life histories. Int J Primatol 28:705–728

    CrossRef  Google Scholar 

  • Harvey PH, Clutton-Brock TH, Mace GM (1980) Brain size and ecology in small mammals and primates. Proc Natl Acad Sci USA 77:4387–4389

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Heritage S (2014) Modeling olfactory bulb evolution through primate phylogeny. PLoS One 9(11):e113904

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hirakawa H (2001) Coprophagy in leporids and other mammalian herbivores. Mammal Rev 31:61–80

    CrossRef  Google Scholar 

  • Hladik CM (1978) Adaptive strategies of primates in relation to leaf eating. In: Montgomery GG (ed) The ecology of arboreal folivores. Smithsonian Institution Press, Washington, pp 373–395

    Google Scholar 

  • Hofer HO (1962) Über die interpretation der ältesten fossilen primatengehirne. Bibliogr Primatol 1:1–31

    Google Scholar 

  • Hofer HO, Wilson JA (1967) An endocranial cast of an early Oligocene primate. Folia Primatol 5:148–152

    CrossRef  CAS  Google Scholar 

  • Hoffstetter R (1977) Phylogénie des primates. Bull Mém Soc Anthropol Paris 4:327–346

    CrossRef  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: brain endocasts. Wiley, Hoboken

    CrossRef  Google Scholar 

  • Hrdlička AL (1925) Weight of the brain and of the internal organs in American monkeys. With data on brain weight in other apes. Am J Phys Anthropol 8:201–211

    CrossRef  Google Scholar 

  • Hürzeler J (1948) Zur Stammesgeschichte der Necrolemuriden. Schweiz palaont Abh 66:3–46

    Google Scholar 

  • Isler K, van Schaik CP (2012) Allomaternal care, life history and brain size evolution in mammals. J Hum Evol 63:52–63

    CrossRef  PubMed  Google Scholar 

  • Isler K, Kirk EC, Miller JM et al (2008) Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J Hum Evol 55:967–978

    CrossRef  PubMed  Google Scholar 

  • Janečka JE, Miller W, Pringle TH et al (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794

    CrossRef  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the Brain and Intelligence. Academic Press, New York

    Google Scholar 

  • Jerison HJ (1979) Brain, body and encephalization in early primates. J Hum Evol 8:615–635

    CrossRef  Google Scholar 

  • Jerison HJ (2007) Evolution of the frontal lobes. In: Cummings JL, Miller BL (eds) The human frontal lobes: functions and disorders, 2nd edn. Guilford Press, New York, pp 107–120

    Google Scholar 

  • Jerison HJ (2012) Digitized fossil brains: neocorticalization. Biolinguistics 6:383–392

    CrossRef  Google Scholar 

  • Joffe TH, Dunbar RIM (1997) Visual and socio–cognitive information processing in primate brain evolution. Proc Roy Soc B-Biol Sci 264:1303–1307

    CrossRef  CAS  Google Scholar 

  • Kaas JH (2002) Convergences in the modular and areal organization of the forebrain of mammals: implications for the reconstruction of forebrain evolution. Brain Behav Evol 59:262–272

    CrossRef  PubMed  Google Scholar 

  • Kaas JH (2012) The evolution of neocortex in primates. Prog Brain Res 195:91–102

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kaufman JA, Ahrens E, Laidlaw D et al (2006) Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, Primates: Prosimii) combining histology, structural magnetic resonance imaging and diffusion tensor imaging. Anat Rec 287:1026–1037

    Google Scholar 

  • Kay RF, Kirk EC (2000) Osteological evidence for the evolution of activity pattern and visual acuity in primates. Am J Phys Anthrop 113:235–262

    CrossRef  PubMed  CAS  Google Scholar 

  • Kay RF, Ross C, Williams BA (1997) Anthropoid origins. Science 275:797–804

    CrossRef  PubMed  CAS  Google Scholar 

  • Kay RF, Perry JMG, Malinzak M et al (2012) Paleobiology of Santacrucian primates. In: Vizcaino SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, pp 306–330

    CrossRef  Google Scholar 

  • Kielan-Jaworowska Z (1984) Evolution of the therian mammals in the Late Cretaceous of Asia. Part VI. Endocranial casts of eutherian mammals. Acta Palaeontol Pol 46:157–171

    Google Scholar 

  • Kielan-Jaworowska Z, Trofimov BA (1986) Endocranial cast of the Cretaceous eutherian mammal Barunlestes. Acta Palaeontol Pol 31:137–144

    Google Scholar 

  • Kihm AJ, Tornow MA (2014) First occurrence of plesiadapiform primates from the Chadronian (latest Eocene). Paludicola 9:176–182

    Google Scholar 

  • Kirk EC (2006) Visual influences on primate encephalization. J Hum Evol 51:76–90

    CrossRef  PubMed  Google Scholar 

  • Kirk EC, Kay RF (2004) The evolution of high visual acuity in the Anthropoidea. In: Ross CF, Kay RF (eds) Anthropoid origins: new visions. Kluwer, Boston, pp 539–602

    CrossRef  Google Scholar 

  • Kirk EC, Daghighi P, Macrini TE et al (2014) Cranial anatomy of the Duchesnean primate Rooneyia viejaensis: new insights from high resolution computed tomography. J Hum Evol 74:82–95

    CrossRef  PubMed  Google Scholar 

  • Kobayashi S (1995) A phylogenetic study of titi monkeys, genus Callicebus, based on cranial measurements: I. Phyletic groups of Callicebus. Primates 36:101–120

    CrossRef  Google Scholar 

  • Kobayashi Y, Matsui T, Ogihara N (2018) Inferring cortical subdivisions based on skull morphology. In: Bruner E, Ogihara N, Tanabe H (eds) Digital endocasts. Springer, Tokyo, pp 33–46

    CrossRef  Google Scholar 

  • Korth WW (1994) The Tertiary record of rodents in North America. Plenum, New York

    CrossRef  Google Scholar 

  • Kristjanson H, Silcox MT, Perry J (2016) A new partial cranium of Plesiadapis tricuspidens and insights into plesiadapiform cranial anatomy. J Vertebr Paleontol:169–170

    Google Scholar 

  • Lang MM, Bertrand OC, San Martin‐Flores G, Law CJ, Abdul-Sater J, Spakowski S, Silcox MT (2022) Scaling patterns of cerebellar petrosal lobules in Euarchontoglires: Impacts of ecology and phylogeny. Anat Rec 1–32

    Google Scholar 

  • Lang MM, Bertrand OC, Silcox MT (2018) Scaling pattern of primate paraflocculi does not correlate with ecological factors (activity pattern and diet/foraging strategy). Am J Phys Anthrop 165(S66):152–153

    Google Scholar 

  • Lang MM, San Martin-Flores GA, Bertrand OC et al (2019) Endocranial shape variation within Euarchontoglires using 3D Geometric Morphometrics. J Vert Paleontol Prog Abstr 2019:137

    Google Scholar 

  • Le Gros Clark WE (1924) On the brain of the tree-shrew (Tupaia minor). Proc Zool Soc Lond 1924:559–567

    Google Scholar 

  • Le Gros Clark WE (1926) On the anatomy of the pen-tailed tree-shrew (Ptilocercus lowii). Proc Zool Soc Lond 96:1179–1309

    CrossRef  Google Scholar 

  • Le Gros Clark WE (1945) Note on the palaeontology of the lemuroid brain. J Anat 79:123–126

    Google Scholar 

  • Le Gros Clark WE, Thomas DP (1952) The Miocene lemuroids of East Africa, Fossil Mammals of Africa, No. 5. British Museum (Natural History), London

    Google Scholar 

  • Lemelin P, Schmitt D (2004) Seasonal variation in body mass and locomotor kinetics of the fat-tailed dwarf lemur (Cheirogaleus medius). J Morphol 260:65–71

    CrossRef  PubMed  Google Scholar 

  • Liu L, Yu L, Pearl DK et al (2009) Estimating species phylogenies using coalescence times among species. Syst Biol 58:468–477

    CrossRef  PubMed  CAS  Google Scholar 

  • Long A, Bloch JI, Silcox MT (2015) Quantification of neocortical ratios in stem primates. Am J Phys Anthropol 157:363–373

    CrossRef  PubMed  Google Scholar 

  • López-Torres S, Bertrand OC, Lang MM et al (2020) Cranial endocast of the stem lagomorph Megalagus and brain structure of basal Euarchontoglires. Proc Roy Soc B-Biol Sci 287:20200665

    CrossRef  Google Scholar 

  • MacPhee RD, Cartmill M (1986) Basicranial structures and primate systematics. In: Swisher DR, Erwin J (eds) Comparative primate biology: systematics, evolution, and anatomy. Alan R. Liss, New York, pp 219–275

    Google Scholar 

  • MacPhee RDE, Novacek MJ, Storch G (1988) Basicranial morphology of early Tertiary erinaceomorphs and the origin of Primates. Am Mus Novit 2921:1–42

    Google Scholar 

  • Macrini TE, Rougier GW, Rowe T (2007) Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat Rec 290:875–892. https://doi.org/10.1002/ar.20551

    CrossRef  Google Scholar 

  • Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. http://www.mesquiteproject.org

  • Makedonska JA, Lebrun R, Tafforeau P et al (2008) Comparative analysis of the endocasts of fossil and modern strepsirhines using microtomography and 3D geometric morphometrics. Am J Phys Anthrop S46:147

    Google Scholar 

  • Malinzak MD, Kay RF, Hullar TE (2012) Locomotor head movements and semicircular canal morphology in primates. Proc Natl Acad Sci 109:17914–17919

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Marino L (1998) A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behav Evol 51:230–238

    CrossRef  PubMed  CAS  Google Scholar 

  • Martin RD (1973) Comparative anatomy and primate systematics. Symp Zool Soc Lond 33:301–337

    Google Scholar 

  • Martin RD (1980) Adaptation and body size in primates. Z Morphol Anthropol 71:115–124

    CrossRef  PubMed  CAS  Google Scholar 

  • Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Chapman Hall, London

    Google Scholar 

  • Martin RD (1993) Allometric aspects of skull morphology in Theropithecus. In: Jablonski NG (ed) Theropithecus: the rise and fall of a primate genus. Cambridge University Press, Cambridge, pp 273–298

    CrossRef  Google Scholar 

  • Martins AMG Jr, Amorim N, Carneiro JC et al (2015) Alu elements and the phylogeny of capuchin (Cebus and Sapajus) monkeys. Am J Primatol 77:368–375

    CrossRef  PubMed  CAS  Google Scholar 

  • Mason VC, Li G, Minx P et al (2016) Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates. Sci Adv 2(8):e1600633

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • McKenna MC (1966) Paleontology and the origin of primates. Folia Primatol 4:1–25

    CrossRef  CAS  Google Scholar 

  • McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FA (eds) Phylogeny of the Primates: a multidisciplinary approach. Plenum, New York, pp 21–46

    CrossRef  Google Scholar 

  • Meng J (2004) Phylogeny and divergence of basal Glires. Bull Am Mus Nat Hist 285:93–109

    CrossRef  Google Scholar 

  • Meng J, Hu Y, Li C (2003) The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull Am Mus Nat Hist 275:1–247

    CrossRef  Google Scholar 

  • Minwer-Barakat R, Marigó J, Femenias-Gual J et al (2017) Microchoerus hookeri nov. sp., a new late Eocene European microchoerine (Omomyidae, Primates): new insights on the evolution of the genus Microchoerus. J Hum Evol 102:42–66

    CrossRef  PubMed  Google Scholar 

  • Mongle CS, Strait DS, Grine FR (2019) Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J Hum Evol 131:28–39

    CrossRef  PubMed  Google Scholar 

  • Montgomery SH, Capellini I, Barton RA et al (2010) Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biology 8:9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    CrossRef  PubMed  CAS  Google Scholar 

  • Nargolwalla MC, Begun DR, Dean MC et al (2005) Dental development and life history in Anapithecus hernyaki. J Hum Evol 49:99–121

    CrossRef  PubMed  CAS  Google Scholar 

  • Neumayer L (1906) Über das Gehirn von Adapis parisiensis Cuv. Neues Jahrb Min Geol Palaont 2:100–104

    Google Scholar 

  • Ni X, Wang Y, Hu Y et al (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68

    CrossRef  PubMed  CAS  Google Scholar 

  • Ni X, Li Q, Li L et al (2016) Oligocene primates from China reveal divergence between African and Asian primate evolution. Science 352:673–677

    CrossRef  PubMed  CAS  Google Scholar 

  • Ni X, Flynn JJ, Wyss AR et al (2019) Cranial endocast of a stem platyrrhine primate and ancestral brain conditions in anthropoids. Sci Adv 5(8):eaav7913

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nowak RM (1991) Walker’s mammals of the world. John Hopkins Press, Baltimore

    Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ et al (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667

    CrossRef  PubMed  Google Scholar 

  • Orliac MJ, Ladevèze S, Gingerich PD et al (2014) Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain. Proc Roy Soc B-Biol Sci 281:20132792

    CrossRef  Google Scholar 

  • Parker ST (2015) Re-evaluating the extractive foraging hypothesis. New Ideas Psychol 37:1–12

    CrossRef  Google Scholar 

  • Pereira-Pedro AS, Bruner E (2018) Landmarking endocasts. In: Bruner E, Ogihara N, Tanabe H (eds) Digital endocasts. Springer, Tokyo, pp 127–142

    CrossRef  Google Scholar 

  • Pereira-Pedro AS, Beaudet A, Bruner E (2019) Parietal lobe variation in cercopithecid endocasts. Am J Primatol 81(7):e23025

    CrossRef  PubMed  Google Scholar 

  • Pereira-Pedro AS, Bruner E, Gunz P et al (2020) A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J Hum Evol 142:102770

    CrossRef  PubMed  Google Scholar 

  • Phillips KA (1998) Tool use in wild capuchin monkeys (Cebus albifrons trinitatis). Am J Primatol 46:259–261

    CrossRef  PubMed  CAS  Google Scholar 

  • Piveteau J (1958) Recherches sur l’encéphale des primates. I.-L’encéphale d’un prosimien lémuriforme: l’Adapis. Ann Paléontol 44:253–255

    Google Scholar 

  • Radinsky LB (1967) The oldest primate endocast. Am J Phys Anthropol 27:385–388

    CrossRef  PubMed  CAS  Google Scholar 

  • Radinsky LB (1970) The fossil evidence of prosimian brain evolution. In: Novack CR, Montagna W (eds) The primate brain: advances in primatology, vol 1. Appleton Century Crofts, New York, pp 209–224

    Google Scholar 

  • Radinsky LB (1974) Prosimian brain morphology: functional and phylogenetic implications. In: Martin RD, Doyle GA, Walker AC (eds) Research seminar on prosimian biology 1972: London University. University of Pittsburg Press, Pittsburg, pp 781–798

    Google Scholar 

  • Radinsky LB (1975) Primate brain evolution. Am Scient 63:656–663

    CAS  Google Scholar 

  • Radinsky LB (1977) Early primate brains: facts and fiction. J Hum Evol 6:79–86

    CrossRef  Google Scholar 

  • Radinsky LB (1978) Evolution of brain size in carnivores and ungulates. Amer Nat 112:815–831

    CrossRef  Google Scholar 

  • Radinsky LB (1982) Some cautionary notes on making inferences about relative brain size. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum, New York, pp 29–37

    CrossRef  Google Scholar 

  • Ramdarshan A, Orliac MJ (2016) Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain. Am J Phys Anthropol 159:5–16

    CrossRef  PubMed  Google Scholar 

  • Regan BC, Julliot C, Simmen B et al (2001) Fruits, foliage and the evolution of primate colour vision. Phil Trans R Soc B 356:229–283

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Rilling JK, Insel TR (1999) Differential expansion of neural projection systems in primate brain evolution. NeuroReport 10:1453–1459

    CrossRef  PubMed  CAS  Google Scholar 

  • Roberts TE, Lanier HC, Sargis EJ et al (2011) Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol Phylogenet Evol 60:358–372

    CrossRef  PubMed  Google Scholar 

  • Rose KD (1981) The Clarkforkian land-mammal age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Pap Paleontol 26:1–197

    Google Scholar 

  • Rose KD (2006) The Beginning of the Age of Mammals. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Rose KD, MacPhee RD, Alexander JP (1999) Skull of early Eocene Cantius abditus (Primates: Adapiformes) and its phylogenetic implications, with a reevaluation of “Hesperolemur” actius. Am J Phys Anthropol 109:523–539

    CrossRef  PubMed  CAS  Google Scholar 

  • Rose KD, Chester SGB, Dunn RH et al (2011) New fossils of the oldest North American euprimate Teilhardina brandti (Omomyidae) from the Paleocene-Eocene Thermal Maximum. Am J Phys Anthropol 146:281–305

    CrossRef  PubMed  Google Scholar 

  • Rose KD, Chew AE, Dunn RH et al (2012) Earliest Eocene mammalian fauna from the Paleocene-Eocene Thermal Maximum at Sand Creek Divide, southern Bighorn Basin, Wyoming. Univ Mich Pap Paleontol 36:1–122

    Google Scholar 

  • Rosenberger AL (1985) In favor of the Necrolemur-tarsier hypothesis. Folia Primatol 45:179–194

    CrossRef  Google Scholar 

  • Rosenberger AL, Hogg R, Wong SM (2008) Rooneyia, postorbital closure, and the beginnings of the age of Anthropoidea In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology. Springer, Dordrecht, pp 325–346

    Google Scholar 

  • Ross CF (1995) Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. J Hum Evol 29:201–227

    CrossRef  Google Scholar 

  • Ross CF, Kirk EC (2007) Evolution of eye size and shape in primates. J Hum Evol 52:294–313

    CrossRef  PubMed  Google Scholar 

  • Rowe N, Goodall J, Mittermeier R (1996) The pictorial guide to the living primates. Pogonias Press, New York

    Google Scholar 

  • Ryan TM, Burney DA, Godfrey LR et al (2008) A reconstruction of the Vienna skull of Hadropithecus stenognathus. Proc Natl Acad Sci USA 105:10699–10702

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan TM, Silcox MT, Walker A et al (2012) Evolution of locomotion in Anthropoidea: the semicircular canal evidence. Proc Roy Soc B-Biol Sci 279:3467–3475

    CrossRef  Google Scholar 

  • San Martin-Flores GA, Nagendren L, Silcox MT (2018) Geometric Morphometrics on treeshrew cranial endocasts: a comparative analysis of scandentian and plesiadapiform brain shapes. J Vert Paleontol Prog Abstr 2018:209

    Google Scholar 

  • San Martin-Flores GA, Nagendren L, Lang MM et al (2019) Cranial endocasts of colugos, and their relevance to understanding the early phases of the evolution of the brain in Euarchonta and Primates. J Vert Paleontol Prog Abstr 2019:186

    Google Scholar 

  • Sargis EJ (2002) A multivariate analysis of the postcranium of treeshrews (Scandentia: Tupaiidae) and its taxonomic implications. Mammalia 66:579–598

    CrossRef  Google Scholar 

  • Sargis EJ, Chester SGB, Bloch JI et al (2018) Functional morphology of a remarkably complete skeleton of Mixodectes pungens: evidence for arboreality in an enigmatic eutherian from the Early Paleocene. J Vert Paleontol Prog Abstr 2018:210

    Google Scholar 

  • Seiffert ER, Boyer DM, Fleagle JG et al (2018) New adapiform primate fossils from the late Eocene of Egypt. Hist Biol 30:204–226

    CrossRef  Google Scholar 

  • Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212:426–454

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Silcox MT (2008) The biogeographic origins of Primates and Euprimates: east, west, north, or south of Eden? In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology. Springer, Dordrecht, pp 199–231

    CrossRef  Google Scholar 

  • Silcox MT, Sargis EJ, Bloch JI et al (2007) Primate origins and supraordinal relationships: morphological evidence. In: Henke W, Tattersall I (eds) Handbook of Paleoanthropology, vol 2. Springer, Heidelberg, pp 831–859

    CrossRef  Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM et al (2009a) Semicircular canal system in early primates. J Hum Evol 56:315–327

    CrossRef  PubMed  Google Scholar 

  • Silcox MT, Dalmyn CK, Bloch JI (2009b) Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc Natl Acad Sci USA 106:10987–10992

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Silcox MT, Benham AE, Bloch JI (2010a) Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. J Hum Evol 58:505–521

    CrossRef  PubMed  Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM et al (2010b) Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria) and the relationships of the Apatemyidae to other mammals. Zool J Linn Soc 160:773–825

    CrossRef  Google Scholar 

  • Silcox MT, Dalmyn CK, Hrenchuk A et al (2011) Endocranial morphology of Labidolemur kayi (Apatemyidae, Apatotheria) and its relevance to the study of brain evolution in Euarchontoglires. J Vert Paleontol 31:1314–1325

    CrossRef  Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM et al (2017a) The evolutionary radiation of plesiadapiforms. Evol Anthropol 26:74–94

    CrossRef  PubMed  Google Scholar 

  • Silcox MT, Rusen R, Bloch JI (2017b) Endocranial anatomy of Late Paleocene (Clarkforkian NALMA) Carpolestes simpsoni (Plesiadapoidea, Primates) from the Bighorn Basin, Wyoming. Am J Phys Anthropol 162(S64):359

    Google Scholar 

  • Silva M, Downing JA (1995) Handbook of mammalian body masses. CRC Press, Boca Raton

    Google Scholar 

  • Simons EL, Seiffert ER, Ryan TM et al (2007) A remarkable female cranium of the early Oligocene anthropoid Aeptyopithecus zeuxis (Catarrhini, Propliopithecidae). Proc Natl Acad Sci 104:8731–8736

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Simpson GG (1967) The Tertiary lorisiform primates of Africa. Bull Comp Zool 136:39–61

    Google Scholar 

  • Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci USA 103:11223–11227

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith TD, Rossie JB, Bhatnagar KP (2007) Evolution of the nose and nasal skeleton in primates. Evol Anth 16:132–146

    CrossRef  Google Scholar 

  • Spitzka EA (1903) Brain-weights of animals with special reference to the weight of the brain in the Macaque monkey. J Comp Neurol 13:9–17

    CrossRef  Google Scholar 

  • Spoor F, Zonneveld F (1998) Comparative review of the human bony labyrinth. Am J Phys Anthropol 107(S27):211–251

    CrossRef  Google Scholar 

  • Spoor F, Garland T, Krovitz G et al (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci 104:10808–10812

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Springer MS, Meredith RW, Gatesy J et al (2012) Marcoevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE 7:e49521

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanhope MJ, Waddell VG, Madsen O et al (1998) Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc Natl Acad Sci USA 95:9967–9972

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Steiper ME, Seiffert ER (2012) Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc Natl Acad Sci USA 109:6006–6011

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephan H (1972) Evolution of primate brains: a comparative anatomical investigation. In: Tuttle R (ed) The functional and evolutionary biology of Primates. Aldine-Atherton, New York, pp 155–174

    Google Scholar 

  • Stephan H, Bauchot R, Andy OJ (1970) Data on size of the brain and of various brain parts in insectivores and primates. In: Noback CR, Montagna W (eds) The primate brain. Appleton-Century-Crofts, New York, pp 289–297

    Google Scholar 

  • Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29

    CrossRef  CAS  Google Scholar 

  • Sterling EJ, Povinelli DJ (1999) Tool use, aye-ayes, and sensorimotor intelligence. Folia Primatol 70:8–16

    CrossRef  CAS  Google Scholar 

  • Strait D, Grine FE, Fleagle JG (2015) Analyzing hominin phylogeny: cladistic approach. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, 2nd edn. Springer Reference, New York, pp 1989–2014

    CrossRef  Google Scholar 

  • Sych L (1967) Fossil endocranial cast of Hypolagus brachygnathus Kormos (Leporidae, Mammalia). Acta Zool Crac 12:27–30

    Google Scholar 

  • Szalay FS (1969) Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull Am Mus Nat Hist 140:195–330

    Google Scholar 

  • Szalay FS (1975) Phylogeny of primate higher taxa: the basicranial evidence. In: Luckett WP, Szalay FA (eds) Phylogeny of the Primates: a multidisciplinary approach. Plenum, New York, pp 91–125

    CrossRef  Google Scholar 

  • Szalay FS (1977) Phylogenetic relationships and a classification of the eutherian Mammalia. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York, pp 315–374

    CrossRef  Google Scholar 

  • Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. New Mexico Mus Nat Hist Sci Bull 7:1–47

    Google Scholar 

  • Takai M, Maschenko EN, Nishimura TD et al (2008) Phylogenetic relationships and biogeographic history of Paradolichopithecus sushkini Trofimov 1977, a large-bodied cercopithecine monkey from the Pliocene of Eurasia. Quatern Int 179:108–119

    CrossRef  Google Scholar 

  • Tigges J, Shantha TR (1969) A stereotaxic brain atlas of the tree shrew (Tupaia glis). Williams and Wilkins, Baltimore

    Google Scholar 

  • Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423

    CrossRef  PubMed  Google Scholar 

  • van Woerden JT, Willems EP, van Schaik CP et al (2012) Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution 66:191–199

    CrossRef  PubMed  Google Scholar 

  • Visalberghi E (1990) Tool use in Cebus. Folia Primatol 54:146–154

    CrossRef  CAS  Google Scholar 

  • von Bonin G (1937) Brain-weight and body-weight of mammals. J Gen Psychol 16:379–389

    CrossRef  Google Scholar 

  • von Koenigswald W (1990) Die Paläobiologie der Apatemyiden (Insectivora s.l.) und die Ausdeutung der Skelettfunde von Heterohyus nanus aus dem Mittleozän von Messel bei Darmstadt. Paleontographica A 210:41–77

    Google Scholar 

  • von Koenigswald W, Rose KD, Grande L et al (2005) First apatemyid skeleton from the Lower Eocene Fossil Butte Member, Wyoming (USA), compared to the European apatemyid from Messel, Germany. Paleontographica A 272:149–169

    CrossRef  Google Scholar 

  • von Koenigswald W, Ruf I, Gingerich PD (2009) Cranial morphology of a new apatemyid, Carcinella sigei n. gen. n. sp. (Mammalia, Apatotheria) from the late Eocene of southern France. Paleontographica A 288:53–91

    CrossRef  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5

    CrossRef  PubMed  CAS  Google Scholar 

  • Warnke P (1908) Mitteilungen neuer Gehirn-und Körpergewichtsbestimmungen bei Säugern, nebst Zusammmenstellung der gesamten bisher beobachteten absoluten und relativen Gehirngewichte bei den verschiedenen Spezies. J Psychol Neurol 13:355–403

    Google Scholar 

  • Weston EM, Lister AM (2009) Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis. Nature 459:85–88

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • White TD, Asfaw B, Beyene Y et al (2009) Ardipithecus ramidus and the paleobiology of early hominids. Science 326:64–86

    CrossRef  Google Scholar 

  • White C, Bloch JI, Silcox MT (2016) Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Primates) and early primate brain evolution. J Vertebr Paleontol:248

    Google Scholar 

  • Wible JR (1990) Petrosals of Late Cretaceous marsupials from North America, and a cladistic analysis of the petrosal in therian mammals. J Vert Paleontol 10:183–205

    CrossRef  Google Scholar 

  • Wible JR (2011) On the treeshrew skull (Mammalia, Placentalia, Scandentia). Ann Carnegie Mus 79:149–231

    CrossRef  Google Scholar 

  • Wible JR, Zeller U (1994) Cranial circulation of the pen-tailed tree shrew Ptilocercus lowii and relationships of Scandentia. J Mamm Evol 2:209–230

    CrossRef  Google Scholar 

  • Williams BA, Kay RF, Kirk EC et al (2010) Darwinius masillae is a strepsirrhine—a reply to Franzen et al. (2009). J Hum Evol 59:567–573

    CrossRef  PubMed  Google Scholar 

  • Wilson Mantilla GP, Chester SG, Clemens WA et al (2021) Earliest Palaeocene purgatoriids and the initial radiation of stem primates. R Soc Open Sci 8:210050

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang ML, Li ML, Ayoola AO et al (2019) Conserved sequences identify the closest living relatives of primates. Zool Res 40:532–540

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhou JN, Ni RJ (2016) The tree shrew (Tupaia belangeri chinensis) brain in stereotaxic coordinates. Springer, Singapore

    CrossRef  Google Scholar 

Download references

Acknowledgments

Thanks to M. Orliac for providing the stl file for Plesiadapis tricuspidens used to generate the relevant part of Fig. 12.2, and to E.C. Kirk for providing images of Rooneyia. We are also thankful to T.E. Macrini and two anonymous reviewers for comments that substantially improved this paper. Support from an NSERC Discovery Grant to MTS; Marie Skłodowska-Curie Actions: Individual Fellowship (H2020-MSCA-IF-2018-2020; No. 792611) to OCB; and a Kalbfleisch Postdoctoral Research Fellowship to SLT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary T. Silcox .

Editor information

Editors and Affiliations

12.1 Electronic Supplementary Material(s)

Fig. 12.S1

Visualization of ancestral state reconstruction for all species analyzed (same tree as in Fig. 12.6 but at the species level). See Fig. 12.6 caption for colour scheme and references (ZIP 6676 kb)

Table 12.S1

Data used for the analysis of EQ (Sect. 12.4.2; Fig. 12.6, 12.S1 and Table 12.2) (XLSX 75 kb)

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Silcox, M.T., Bertrand, O.C., Harrington, A.R., Lang, M.M., San Martin-Flores, G.A., López-Torres, S. (2023). Early Evolution of the Brain in Primates and Their Close Kin. In: Dozo, M.T., Paulina-Carabajal, A., Macrini, T.E., Walsh, S. (eds) Paleoneurology of Amniotes . Springer, Cham. https://doi.org/10.1007/978-3-031-13983-3_12

Download citation