Skip to main content

Evolution of the Mammalian Neurosensory System: Fossil Evidence and Major Events

  • Chapter
  • First Online:
Paleoneurology of Amniotes
  • 693 Accesses

Abstract

The skeleton and inferred neurosensory system of the ancestral amniote provide a point of departure to trace neurosensory evolution in extinct stem-mammals that culminated in the origin of crown Mammalia. Early stem-mammal evolution mostly involved enhanced integration of skeletal elements for feeding and locomotion as they became apex predators. With the origin of Cynodontia, modifications of the dentition, oropharynx, and braincase suggest that mastication and olfaction had become major influences in stem-mammal evolution, probably through ontogenetic cascades triggered by expression of an expanded olfactory genome. With the origin of Mammaliaformes, brain size nearly doubled in response to further elaboration of the olfactory system, dentition, the elaboration of hair, all in the context of miniaturization of adult body size. One of the keys to understanding major features in stem-mammal evolution and the origin of Mammalia is the emergence of an unsurpassed ability to perceive and process olfactory and dietary information, and to diversify and exploit the fast-changing chemical environments they faced throughout much of their history. Whether through connectional invasions and epigenetic population matching, or some other developmental mechanism, hypertrophy in peripheral sensory arrays produced cascading influences on central organization. These led to emergence of the unique mammalian neocortex and to the physiological and behavioral repertoires that are so distinctive of mammals today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ali :

Alisphenoid

Alv :

Alveoli for the dentition

Ang :

Angular

Art :

Articular

Bs :

Basisphenoid

c :

Lower canine

C :

Upper canine

Cb :

Cerebellum

choa:

Choana

cr :

cheek tooth crown

cve :

Cavum epipterycum

D cond :

Condylar process of dentary

D cor :

Coronoid process of dentary

D ctx :

Dorsal cortex (endocast)

Den :

Dentary

D ang :

Angular process of dentary

D ram :

Dentary ramus

Ec :

Ectopterygoid

Eoc :

Exoccipital

Et 1-5 :

Ethmoid turbinals 1-5

F ann :

Annular fissure

F mag :

Foramen magnum

Fr :

Frontal

Fv :

Fenestra vestibuli

Hyp :

Hypophysis (endocast)

i :

1-4 Lower incisors

I 1-3 :

Upper incisors

iam :

Internal auditory meatus (endocast)

II :

Cranial nerve II (endocast)

Ju :

Jugal

Lac :

Lacrimal

m 1-3 :

Lower molars

M 1-3 :

Upper molars

Max :

Maxilla

Mt :

Maxilloturbinal

Nas :

Nasal

Ncx :

Neocortex

Nt :

Nasoturbinal

Ob :

Olfactory bulb

Ocx :

Olfactory (piriform) cortex

Opl :

Optic lobes (endocast)

p 1-5 :

Lower premolars

P 1-2 :

Upper premolars

Pa :

Parietal

Pal :

Palatine

Pet :

Petrosal

Pin :

Pineal body (endocast)

Pfl :

Paraflocculus (endocast)

Pmx :

Premaxilla

Prom :

Promontorium of petrosal

Pt :

Pterygoid

Qu :

Quadrate

Re lam :

Reflected lamina of angular (=ectotympanic)

Rf :

Rhinal fissure

rt :

tooth root

Smx :

Septomaxilla

Soc :

Supraoccipital

Spc :

Spinal cord (endocast)

Sq :

Squamosal

sss :

Superior sagittal sinus (endocast)

Sv :

Sinus venosus

V :

Cranial nerve V (endocast)

Vo :

Vomer

References

  • Aboitiz F, Montiel JF (2015) Olfaction, navigation, and the origin of isocortex. Front Neurosci 9(402):1–12

    Google Scholar 

  • Ashwell K (ed) (2010) The neurobiology of Australian marsupials. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ashwell K (ed) (2013) Neurobiology of monotremes: brain evolution in our distant mammalian cousins. CSIRO Publishing, Collingwood

    Google Scholar 

  • Avivi-Arber L, Martin R, Lee JC et al (2011) Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 56(12):1440–1465

    Article  PubMed  Google Scholar 

  • Balanoff AM, Bever GS (2020) The role of endocasts in the study of brain evolution. In: Kaas J (ed) Evolutionary neurosciece, 2nd edn. Academic, New York, pp 223–241

    Google Scholar 

  • Balanoff AM, Bever GS, Colbert MW et al (2016) Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. J Anat 229(2):173–190

    Article  PubMed  Google Scholar 

  • Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444:295–301

    Article  PubMed  CAS  Google Scholar 

  • Barrowclough GF, Cracraft J, Klicka J et al (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307

    Article  PubMed  PubMed Central  Google Scholar 

  • Baur G, Case EC (1899) The history of the pelycosauria with a description of the genus Dimetrodon. Trans Am Phil Soc 20:5–62

    Article  Google Scholar 

  • Baxi KN, Dorries KM, Eisthen HL (2006) Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci 29(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Benoit J, Manger PR, Rubidge BS (2016) Palaeoneurological clues to the evolution of defining mammalian soft tissue traits. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep25604

    Article  CAS  Google Scholar 

  • Benoit J, Fernandez V, Manger PR et al (2017) Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological diversity at the deep evolutionary root of mammals. Brain Behav Evol 90(4):311–333

    Article  PubMed  Google Scholar 

  • Berlin JC, Kirk EC, Rowe TB (2013) Functional implications of ubiquitous semicircular non-orthogonality in mammals. PLoS One 8(11):e79585. https://doi.org/10.1371/journal.pone.0079585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertmar G (1981) Evolution of vomeronasal organs in vertebrates. Evolution 35:359–366

    Article  PubMed  Google Scholar 

  • Bever GS, Rowe TB, Ekdale EG et al (2005) Comment on “Independent origins of middle ear bones in monotremes and therians”. Science 309:1492a

    Article  Google Scholar 

  • Bhatnagar KP, Meisami E (1998) Vomeronasal organ in bats and primates: extremes of structural variability and its phylogenetic implications. Microscopy ResTech 43(6):465–475

    Article  CAS  Google Scholar 

  • Bird DJ, Murphy WJ, Fox-Rosales L et al (2018) Olfaction written in bone: cribriform plate size parallels olfactory receptor gene repertoires in Mammalia. Proc R Soc B 285:20180100. https://doi.org/10.1098/rspb.2018.0100

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonaparte JF, Martinelli AG, Schultz CL et al (2005) New information on Brasilodon and Brasilitherium (Cynodontia, Probainognathia) from the late Triassic of southern Brazil. Rev Bras Paleontolog 8(1):25–46

    Article  Google Scholar 

  • Bonaparte JF, Soares MB, Martinelli AG (2013) Discoveries in the Late Triassic of Brazil improves knowledge on the origin of mammals. Hist Nat 3rd Ser 2:5–30

    Google Scholar 

  • Brainerd EL (2015) Major transformations in vertebrate breathing mechanisms. In: Dial KP, Shubin N, Brainerd EL (eds) Great transformations in vertebrate evolution. University of Chicago Press, Chicago, pp 47–61

    Google Scholar 

  • Brainerd EL, Owerkowicz T (2006) Functional morphology and evolution of aspirational breathing in tetrapods. Resp Physiol Neeurobi 154:73–88

    Article  Google Scholar 

  • Brink AS (1957) Speculations on some advanced mammalian characteristics in the higher mammal-like reptiles. Palaeontol Africana 4:77–96

    Google Scholar 

  • Briscoe SD, Ragsdale CW (2018) Molecular anatomy of the alligator dorsal telencephalon. J Comp Neurol 526(10):1613–1646

    Article  PubMed  PubMed Central  Google Scholar 

  • Broom R (1932) The mammal-like reptiles of South Africa and the origin of mammals. HF & G Witherby, London

    Google Scholar 

  • Bruce LL (2007) Evolution of the nervous system in reptiles. In: Bullock TH, Rubenstein LR, Kaas JH (eds) Evolution of nervous systems: a comprehensive reference, The evolution of nervous systems in non-mammalian vertebrates, vol II. Elsevier/Academic, Oxford, pp 125–156

    Chapter  Google Scholar 

  • Bruce LL (2009) Evolution of the nervous system in reptiles. In: Kaas JH (ed) Evolutionary nuroscience, 1st edn. Academic, New York, pp 233–265

    Google Scholar 

  • Bruce LL, Braford MR Jr (2009) Evolution of the limbic system. In: Squire LR (ed) New encyclopedia of neuroscience. Elsevier Academic, Oxford, pp 43–55

    Chapter  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  • Burgin CJ, Colella JP, Kahn PL et al (2018) How many species of mammals are there? J Mammal 99(1):1–14

    Article  Google Scholar 

  • Butler AB (1994) The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Rev 19(1):66–101

    Article  PubMed  CAS  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Cantino PD, De Queiroz K (eds) (2020) PhyloCode: a phylogenetic code of biological nomenclature. CRC Press, Boca Raton

    Google Scholar 

  • Carr EC, Christiansen-Dalsgaard J (2016) Evolutionary trends in directional hearing. Curr Opin Neurobiol 40:111–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Soares D (2009) Shared and convergent features of the auditory system of vertebrates. In: Kaas JH (ed) Evolutionary neuroscience, 1st edn. Academic, New York, pp 479–493

    Google Scholar 

  • Carrier DR (1987) The evolution of locomotor stamina in tetrapods: circumventing mechanical constraint. Paleobiology 13:326–341

    Article  Google Scholar 

  • Case EC (1907) Revision of the pelycosauria of North America, vol 55. Carnegie Inst Washington Publ, Washington, pp 1–176

    Book  Google Scholar 

  • Castiglione S, Serio C, Piccolo M et al (2021) The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol J Linn Soc 132(1):221–231

    Article  Google Scholar 

  • Catania KC (2013) Stereo and serial sniffing guide navigation to an odour source in a mammal. Nat Commun 4:1441–1449

    Article  PubMed  Google Scholar 

  • Catania KC, Catania EH (2015) Comparative studies of somatosensory systems and active sensing. In: Krieger P, Groth A (eds) Sensorimotor integration in the whisker system. Springer, New York, pp 7–30

    Chapter  Google Scholar 

  • Chen WR, Shepherd G (2005) The olfactory glomerulus: a cortical module with specific functions. J Neurocytol 34:353–360

    Article  PubMed  Google Scholar 

  • Cifelli RL, Rowe TB, Luckett WP et al (1996) Fossil evidence for the origin of the marsupial pattern of tooth replacement. Nature 379:715–718

    Article  CAS  Google Scholar 

  • Clack JA (2012) Gaining ground. Indiana University Press, Bloomington

    Google Scholar 

  • Clark JM, Hopson JA (1985) Distinctive mammal-like reptile from Mexico and its bearings on the phylogeny of Tritylodontidae. Nature 315:398–400

    Article  Google Scholar 

  • Cluver MA (1971) The cranial morphology of the Genus Lystrosaurus. Ann S Afr Mus 56:155–273

    Google Scholar 

  • Cluver MA (1978) The skeleton of the mammal-like reptile Cistecephalus with evidence for a fossorial mode of life. Ann S Afr Mus 76:213–246

    Google Scholar 

  • Collin SP (2010) Evolution and ecology of retinal photoreception in early vertebrates. Brain Behave Evol 75:174–185

    Article  Google Scholar 

  • Connors BW, Kriegstein AR (1986) Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons. J Neurosci 6:164–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cope ED (1886) On the structure of the brain and auditory apparatus of a theromorphous reptile of the Permian Epoch. Proc Am Phil Soc 23:234–238

    Google Scholar 

  • Crompton AW (1963) Tooth replacement in the cynodont Thrinaxodon Liorhinus. Ann S Afr Mus 46:479–521

    Google Scholar 

  • Crompton AW (1972) Postcanine occlusion in cynodonts and tritylodontids. Bull Br Mus Nat Hist Geol 21:27–71

    Google Scholar 

  • Crompton AW (1989) The evolution of mammalian mastication. In: Wake DB, Roth G (eds) Complex organismal functions: integration and evolution in vertebrates. Wiley, New York, pp 23–40

    Google Scholar 

  • Crompton AW, Parker P (1978) Evolution of the mammalian masticatory apparatus. Am Sci 66(2):92–201

    Google Scholar 

  • Crompton AW, Taylor CR, Jagger JA (1978) Evolution of homeothermy in mammals. Nature 272:333

    Article  PubMed  CAS  Google Scholar 

  • Crompton AW, Owerkowicz T, Bhullar BAS et al (2017a) Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: speculations on the evolution of mammalian endothermy. J Vert Paleontol 37(1):e1269116

    Article  Google Scholar 

  • Crompton AW, Musinsky C, Rougier GW et al (2017b) Origin of the lateral wall of the mammalian skull: fossils, monotremes and therians revisited. J Mammal Evol 25(3):301–313. https://doi.org/10.1007/s10914-017-9388-7

    Article  Google Scholar 

  • Crompton AW, Musinsky C, Bonaparte J et al (2018) Evolution of the mammalian fauces region and the origin of suckling. https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364482

  • Davies WL, Carvalho LS, Cowing JA et al (2007) Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol 17(5):R161–R163

    Article  PubMed  CAS  Google Scholar 

  • De Araujo IE, Rolls ET, Kringelbach ML et al (2003) Taste olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 18:2059–2068

    Article  PubMed  Google Scholar 

  • de Queiroz K (1994) Replacement of an essentialistic perspective on taxonomic definitions as exemplified by the definition of “Mammalia”. Syst Biol 43(4):497–510

    Article  Google Scholar 

  • de Queiroz K (2007) Toward an integrated system of clade names. Syst Biol 56:956–974

    Article  PubMed  Google Scholar 

  • de Queiroz K, Gauthier JA (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Biol 39(4):307–322

    Google Scholar 

  • de Queiroz K, Gauthier JA (1992) Phylogenetic taxonomy. Annu Rev Ecol Evol Syst 23(1):449–480

    Article  Google Scholar 

  • de Queiroz K, Gauthier JA (1994) Toward a phylogenetic system of biological nomenclature. Trends Ecol Evol 9(1):27–31

    Article  PubMed  Google Scholar 

  • de Queiroz K, Cantino PD, Gauthier JA (eds) (2020) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton

    Google Scholar 

  • Demski LS (1993) Terminal nerve complex. Cells Tissues Organs 148(2-3):81–95

    Article  CAS  Google Scholar 

  • Demski LS, Schwanzel-Fukuda M (eds) (1987) The terminal nerve (Nervus Terminalis) structure, function and evolution. Ann N Y Acad Sci 519:1–49

    Google Scholar 

  • Didier G, Laurin M (2020) Exact distribution of divergence times from fossil ages and tree topologies. Syst Biol 69(6):1068–1087

    Article  PubMed  Google Scholar 

  • Di-Pöi N, Milinkovitch MC (2016) The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Sci Adv 2016:e1600708

    Article  Google Scholar 

  • Donoghue MJ, Doyle J, Gauthier JA et al (1989) Importance of fossils in phylogeny reconstruction. Annu Rev Ecol Evol Syst 20:431–460

    Article  Google Scholar 

  • Edinger T (1975) Paleoneurology 1804–1966: an annotated bibliography. Adv Anat Embryol Cell Biol 49:3–258

    PubMed  CAS  Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations: an analysis of trends in evolution, adaptation, and behaviour. University of Chicago Press, Chicago

    Google Scholar 

  • Eisenberg JF (1990) The behavioral/ecological significance of body size in the Mammalia. In: Damuth J, MacFadden B (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge, UK, pp 25–37

    Google Scholar 

  • Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228(2):324–337

    Article  PubMed  Google Scholar 

  • Fabbri MN, Mongiardino M, Pritchard AC et al (2017) The skull roof tracks the brain during evolution and development of reptiles including birds. Nat Ecol Evol 1(10):1543–1550. https://doi.org/10.1038/s41559-017-0288-2

    Article  PubMed  Google Scholar 

  • Farbman AI (1988) Cellular interactions in the development of the vertebrate olfactory system. In: Margolis FL, Getchell TV (eds) Molecular neurobiology of the olfactory system. Plenum Press, New York, pp 319–332

    Chapter  Google Scholar 

  • Farbman AI (1990) Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 13:362–365

    Article  PubMed  CAS  Google Scholar 

  • Farbman AI (1992) Cell biology of olfaction. Cambridge University Press, CITY

    Google Scholar 

  • Gaengler P, Metzler E (1992) The periodontal differentiation in the phylogeny of teeth – an overview. J Periodontal Res 27:214–225. https://doi.org/10.1111/j.1600-0765.1992.tb01671.x

    Article  PubMed  CAS  Google Scholar 

  • Garrett EC, Steiper ME (2014) Strong links between genomic and anatomical diversity in both mammalian olfactory chemosensory systems. Proc B Roy Soc Lond 281:2013–2828

    Google Scholar 

  • Gauthier JA, Kluge AG, Rowe TB (1988a) Amniote phylogeny and the importance of fossils. Cladistics 4:105–209

    Article  PubMed  Google Scholar 

  • Gauthier JA, Kluge AG, Rowe TB (1988b) The early evolution of the Amniota. In: Benton M (ed) The phylogeny and Classification of the Tetrapods, Vol. 1: Amphibians, Reptiles and Birds, Syst Assoc Spec Vol Ser special vol No. 35a. Clarendon Press, Oxford, pp 103–155

    Google Scholar 

  • Gauthier JA, Cannatella D, de Queiroz K et al (1989) Tetrapod phylogeny. In: Fernholm B, Bremer H, Jornvall H (eds) The hierarchy of life, Nobel sympos 70. Excerpta Medica, Amsterdam, pp 337–353

    Google Scholar 

  • Gemmell NJ, Rutherford K, Prost S et al (2020) The tuatara genome reveals ancient features of amniote evolution. Nature 584:403–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodrich ES (1930) Studies on the structure and function of vertebrates. Constable & Co, London

    Book  Google Scholar 

  • Grant R, Haidarliu S, Kennerley NJ et al (2013) The evolution of active vibrissal sensing in mammals: evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica. J Exp Biol 216(18):3483–3494

    PubMed  Google Scholar 

  • Graybeal A, Rosowski JJ, Ketten DR et al (1989) Inner ear structure in Morganucodon, an early Jurassic mammal. Zool J Linn Soc 96(2):107–117

    Article  Google Scholar 

  • Green PA, Van Valkenburgh B, Pang B et al (2012) Respiratory and olfactory turbinal size in canid and arctoid carnivorans. J Anat 221(6):609–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Grothe B, Carr CE, Cassedy JH et al (2005) The evolution of central pathways and their neural processing patterns. In: Manley GA, Popper AN, Fay AN (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 289–359

    Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012

    Article  PubMed  CAS  Google Scholar 

  • Haberly LB (1985) Neuronal circuitry in olfactory cortex: anatomy and functional implications. Chem Senses 10:219–238

    Article  Google Scholar 

  • Haberly LB (2001) Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 26:551–576

    Article  PubMed  CAS  Google Scholar 

  • Habre-Hallage P, Dricot L, Hermoye L et al (2014) Cortical activation resulting from the stimulation of periodontal mechanoreceptors measured by functional magnetic resonance imaging (fMRI). Clin Oral Investig 18(8):1949–1961

    Article  PubMed  CAS  Google Scholar 

  • Hall BK (2009) The neural crest and neural crest cells in vertebrate development and evolution. Springer, New York

    Book  Google Scholar 

  • Harris KD, Shepherd GM (2015) The neocortical circuit: themes and variations. Nat Neurosci 18(2):170–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey PH, Clutton-Brock TH, Mace GM (1980) Brain size and ecology in small mammals and primates. PNAS 77:4387–4389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayden S, Bekaert M, Crider TA et al (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heiss E, Aerts P, Van Wassenbergh S (2018) Aquatic–terrestrial transitions of feeding systems in vertebrates: a mechanical perspective. J Exp Biol 221(8):221, jeb154427. https://doi.org/10.1242/jeb.154427

    Article  PubMed  Google Scholar 

  • Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:1–28

    Article  Google Scholar 

  • Hillenius WJ (1992) The evolution of nasal turbinates and mammalian endothermy. Paleobiology 18:17–29

    Article  Google Scholar 

  • Hillenius WJ (1994) Turbinates in therapsids: evidence for late Permian origins of mammalian endothermy. Evolution 48:207–229. https://doi.org/10.1111/j.1558-5646.1994.tb01308.x

    Article  PubMed  Google Scholar 

  • Hirasawa T, Kuratani S (2013) A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. J Anat 222(5):504–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hlusko LJ, Sage RD, Mahaney MC (2011) Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. J Exp Zool B Mol Dev Evol 316(1):21–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman EA, Rowe TB (2018) Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth. Nature 561(7721):104–108

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann CA, Rodrigues PG, Soares MB et al (2019) Brain endocast of two non-mammaliaform cynodonts from southern Brazil: an ontogenetic and evolutionary approach. Hist Biol 2019:1–12

    Google Scholar 

  • Hopson JA (1971) Postcanine replacement in the gomphodont cynodont Diademodon. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50(suppl 1):1–21

    Google Scholar 

  • Hopson JA (2015) Fossils, trackways, and transitions in locomotion: a case study of Dimetrodon. In: Dial KP, Shubin N, Brainerd EL (eds) Great transformations in vertebrate evolution. University of Chicago Press, Chicago, pp 125–141

    Google Scholar 

  • Huber E (1930) Evolution of facial musculature and cutaneous field of Trigeminus. Part I. Quart Rev Biol 5(2):133–188

    Article  Google Scholar 

  • Hurlburt GR, Ridgely RC, Witmer LM (2013) Relative size of brain and cerebrum in tyrannosaurid dinosaurs: an analysis using brainendocast quantitative relationships in extant alligators. In: Parrish JM, Molnar RE, Currie PJ, Koppelhus EB (eds) Tyrannosaurid paleobiology. Indiana University Press, Bloomington, pp 135–155

    Google Scholar 

  • Iyengar S, Qi HX, Jain N et al (2007) Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys. J Compar Neurol 501(1):95–120

    Article  Google Scholar 

  • Jacobs GH (2009) Evolution of colour vision in mammals. Phil Trans B Royal Soc Lond 364(1531):2957–2967

    Article  CAS  Google Scholar 

  • Jacobs GH (2013) Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – a significant trend in the evolution of mammalian vision. Visual Neurosci 30(1-2):39–53

    Article  Google Scholar 

  • Janis CM, Keller JC (2001) Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontol Pol 46(2):137–170

    Google Scholar 

  • Jarvik E (1942) On the structure of the snout of crossopterygians and lower gnathostomes in general. Zool Bidr Upps 21:235–675

    Google Scholar 

  • Jenkins FA Jr (1969) The evolution and development of the dens of the mammalian axis. Anat Rec 164:173–184

    Article  PubMed  Google Scholar 

  • Jenkins FA Jr (1971) The postcranial skeleton of African cynodonts: problems in the early evolution of the mammalian postcranial skeleton. Bull Peabody Mus Nat Hist 36:1–216

    Google Scholar 

  • Jerison H (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Ji Q, Luo Z-X, Yuan C et al (2006) A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (2009) The evolution of the dorsal thalamus in mammals. In: Kaas JH (ed) Evolutionary neuroscience, 1st edn. Elsevier, Oxford, pp 569–586

    Google Scholar 

  • Kaas JH (2013) The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4(1):33–45

    Article  PubMed  Google Scholar 

  • Kaas JH (2020) The organization of neocortex in early mammals. In: Kaas JH (ed) Evolutionary neuroscience, 2nd edn. Elsevier, Oxford, pp 333–348

    Chapter  Google Scholar 

  • Kaas JH, Qi HX, Iyengar S (2006) Cortical network for representing the teeth and tongue in primates. Anat Rec 288(2):182–190

    Article  Google Scholar 

  • Katz MJ, Lasek RJ (1978) Evolution of the nervous system: role of ontogenetic mechanisms in the evolution of matching populations. PNAS 75(3):1349–1352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemp TS (1983) The relationships of mammals. Zool J Linn Soc 77:353–384

    Article  Google Scholar 

  • Kemp TS (1988) A note on the Mesozoic mammals, and the origin of therians. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, volume 2: mammals, Syst Assoc Spec Vol Ser special vol No. 35b. Clarendon Press, Oxford, pp 23–29

    Google Scholar 

  • Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, Oxford

    Google Scholar 

  • Kemp TS (2006) The origin and early radiation of the therapsid mammal like reptiles: a palaeobiological hypothesis. J Evol Biol 19(4):1231–1247

    Article  PubMed  CAS  Google Scholar 

  • Kemp TS (2009) The endocranial cavity of a nonmammalian cynodonts Chiniquodon theotenicus and its implications for the origin of the mammalian brain. J Vert Paleontol 29(4):1188–1198

    Article  Google Scholar 

  • Kermack DM, Kermack KE (1984) The evolution of mammalian characters. Springer, New York

    Book  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs. Columbia University Press, New York

    Book  Google Scholar 

  • Kirk EC, Daghighi P, Macrini T et al (2014) Cranial anatomy of the Duchesnean primate Rooneyia viejaensis: New insights from high resolution computed tomography. J Hum Evol 74:82–95

    Article  PubMed  Google Scholar 

  • Kitazawa T, Takechi M, Hirasawa T et al (2015) Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids. Nat Commun 6(1):1–7

    Article  Google Scholar 

  • Koyabu D, Werneburg I, Morimoto N et al (2014) Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat commun 5(1):1–9

    Article  Google Scholar 

  • Krubitzer L, Hunt DL (2009) Captured in the new of space and time: understanding cortical field evolution. In: Kaas JH (ed) Evolutionary neuroscience, 1st edn. Elsevier, Oxford, pp 545–568

    Google Scholar 

  • Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15(4):444–453

    Article  PubMed  CAS  Google Scholar 

  • Kruska DCT (2007) The effects of domestication on brain size. In: Bullock TH, Rubenstein LR, Kaas JH (eds) Evolution of nervous systems: a comprehensive reference, volume II, the evolution of nervous systems in non-mammalian vertebrates. Elsevier Academic, Oxford, pp 143–153

    Chapter  Google Scholar 

  • Kubo K, Shibukawa Y, Shintani M et al (2008) Cortical representation area of human dental pulp. J Dental Res 87(4):358–362

    Article  CAS  Google Scholar 

  • Laaß M, Kaestner A (2017) Evidence for convergent evolution of a structure comparable to the mammalian neocortex in a Late Permian therapsid. J Morph 278:1033–1057

    Article  PubMed  Google Scholar 

  • Laurin M, Reisz RR (2020) Synapsida. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 811–814

    Google Scholar 

  • LeBlanc AR, Brink KS, Whitney MR et al (2018) Dental ontogeny in extinct synapsids reveals a complex evolutionary history of the mammalian tooth attachment system. Proc Royal Soc B 285(1890):20181792. https://doi.org/10.1098/rspb.2018.1792

    Article  Google Scholar 

  • Lemberg JB, Daeschler EB, Shubin NH (2021) The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting. PNAS 118(7):1–10. e2016421118

    Article  Google Scholar 

  • Lightoller GS (1942) Matrices of the facialis musculature: homologization of the musculature in monotremes with that of marsupials and placentals. J Anat 76(3):258–269

    PubMed  PubMed Central  CAS  Google Scholar 

  • Louis M, Huber T, Benton R et al (2008) Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 11(2):187–199

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Crompton AW, Sun A-L (2001) A new mammal from the Early Jurassic and evolution of mammalian characteristics. Science 292:1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36:159–175

    Article  Google Scholar 

  • Luo Z-X, Ruf I, Martin T (2012) The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for ear evolution in therian mammals. Zool J Linn Soc 166(2):433–463

    Article  Google Scholar 

  • Luo Z-X, Gatesy SM, Jenkins FA Jr et al (2015) Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. PNAS 112(51):E7101–E7109. https://doi.org/10.1073/pnas.1519387112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch G (1986) Synapses, circuits, and the beginnings of memory. MIT Press, Cambridge, MA

    Google Scholar 

  • Mace GM, Harvey PH, Clutton-Brock TH (1981) Brain size and ecology in small mammals. J Zool 193:333–354

    Article  Google Scholar 

  • Macrini TE (2006). The evolution of endocranial space in mammals and non-mammalian cynodonts. Dissertation, University of Texas

    Google Scholar 

  • Macrini TE (2012) Comparative morphology of the internal nasal skeleton of adult marsupials based on x-ray computed tomography. Bull Am Mus Nat Hist 2012:1–91

    Article  Google Scholar 

  • Macrini TE (2014) Development of the ethmoid in Caluromys philander (Didelphidae, Marsupialia) with a discussion on the homology of the turbinal elements in marsupials. Anat Rec 297(11):2007–2017

    Article  Google Scholar 

  • Macrini TE, Rowe TB, Archer M (2006) Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly. J Morph 267:1000–1015

    Article  PubMed  Google Scholar 

  • Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81(2):293–338

    Article  PubMed  Google Scholar 

  • Marín O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790

    Article  PubMed  Google Scholar 

  • Martinelli AG, Rougier GW (2007) On Chaliminia musteloides (Eucynodontia: Tritheledontidae) from the Late Triassic of Argentina, and a Phylogeny of Ictidosauria. J Vert Paleontol 27:442–460

    Article  Google Scholar 

  • McMahon TA, Bonner JT (1983) On size and life. Scientific American Library, New York

    Google Scholar 

  • Meng J, Hu Y, Wang Y et al (2006) A Mesozoic gliding mammal from northeastern China. Nature 444:889–893

    Article  PubMed  CAS  Google Scholar 

  • Molnár Z, Butler AB (2002) Neuronal changes during forebrain evolution in amniotes: an evolutionary developmental perspective. Progr Brain Res 136:21–38

    Article  Google Scholar 

  • Molnár Z, Tavare A, Cheung AFP (2009) The origin of Neocortex: lessons from comparative embryology. In: Kaas JH (ed) Evolutionary neuroscience, 1st edn. Elsevier, Oxford, pp 509–522

    Google Scholar 

  • Molnár Z, Kaas JH, de Carlos JA et al (2014) Evolution and development of the mammalian cerebral cortex. Brain Behav Evol 83:126–139

    Article  PubMed  Google Scholar 

  • Muchlinski MN (2008) The relationship between the infraorbital foramen, infraorbital nerve, and maxillary mechanoreception: implications for interpreting the paleoecology of fossil mammals based on infraorbital foramen size. Anat Rec 291(10):1221–1226

    Article  Google Scholar 

  • Muchlinski MN, Wible JR, Corfe I et al (2020) Good vibrations: The evolution of whisking in small mammals. Anat Rec 303(1):89–99

    Article  Google Scholar 

  • Neville KR, Haberly LB (2004) Olfactory cortex. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York, pp 415–454

    Chapter  Google Scholar 

  • Nieuwenhuys RHJ, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Niimura Y (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genom 13:103–114

    Article  CAS  Google Scholar 

  • Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci 102(17):6039–6044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51(6):505–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24(9):1485–1496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Northcutt RG (2001) Changing views of brain evolution. Brain Res Bull 55(6):663–674

    Article  PubMed  CAS  Google Scholar 

  • Olson EC (1944) Origin of mammals based upon cranial morphology of the therapsid suborders. Geol Soc Amer Spec Pap 55:1–130

    Google Scholar 

  • Olson EC (1959) The evolution of mammalian characters. Evolution 13:344–353

    Article  Google Scholar 

  • Olson EC (1966) Community evolution and the origin of mammals. Ecology 47(2):291–302

    Article  Google Scholar 

  • Osborn JW (1984) From reptile to mammal: evolutionary considerations of the dentition with emphasis on tooth attachment. Symp Zool Soc Lond 52:549–574

    Google Scholar 

  • Osborn JW, Crompton AW (1978) The evolution of mammalian from reptilian dentitions. Breviora 399:1–18

    Google Scholar 

  • Parsons TS (1967) Evolution of the nasal structure in the lower tetrapods. Amer Zool 7:397–413

    Article  Google Scholar 

  • Pavanatto AE, Kerber L, Dias da Silva S (2019) Virtual reconstruction of cranial endocasts of traversodontid cynodonts (Eucynodontia: Gomphodontia) from the upper Triassic of Southern Brazil. J Morph 280(9):1267–1281

    Article  PubMed  Google Scholar 

  • Pihlström H, Fortelius M, Hemilä S et al (2005) Scaling of mammalian ethmoid bones can predict olfactory organ size and performance. Proc B Royal Soc 272:957–962

    Article  Google Scholar 

  • Presley R (1981) Alisphenoid equivalents in placentals, marsupials, monotremes and fossils. Nature 294:668–670

    Article  Google Scholar 

  • Quiroga JC (1979) The brain of two mammal-like reptiles (Cynodontia –Therapsida). J Hirnforsch 20:341–350

    PubMed  CAS  Google Scholar 

  • Quiroga JC (1980) The brain of the mammal-like reptile Probainognathus jenseni (Therapsida, Cynodontia), a correlative paleo-neurological approach to the neocortex at the reptile-mammal transition. J Hirnforsch 21:299–336

    PubMed  CAS  Google Scholar 

  • Quiroga JC (1984) The endocranial cast of the advanced mammal-like reptile Therioherpeton cargnini (Cynodontia – Therapsida) from the middle Triassic of Brazil. J Hirnforsch 25:285–290

    PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (2000) Radial unit hypothesis of neocortical expansion. In: Bock G, Cardew G (eds) Evolutionary developmental biology of the cerebral cortex. Novartis found sympos chichester. Wiley, New York, pp 30–52

    Google Scholar 

  • Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55(2):204–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nature Rev Neurosci 10:724–735

    Article  CAS  Google Scholar 

  • Remple MS, Henry EC, Catania KC (2003) Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol 467(1):105–118

    Article  PubMed  Google Scholar 

  • Ren T, He W, Gillespie PG (2011) Measurement of cochlear power gain in the sensitive gerbil ear. Nat Comm 2(1):1–7

    Article  Google Scholar 

  • Rodrigues PG, Ruf I, Schultz CL (2013) Digital reconstruction of the otic region and inner ear of the non-mammalian cynodont Brasilitherium riograndensis (Late Triassic, Brazil) and its relevance to the evolution of the mammalian ear. J Mammal Evol 20(4):291–307

    Article  Google Scholar 

  • Rodrigues PG, Ruf I, Schultz CL (2014) Study of a digital cranial endocast of the non-mammaliaform cynodont Brasilitherium riograndensis (Late Triassic, Brazil) and its relevance to the evolution of the mammalian brain. Paläontol Z 88:329–352

    Article  Google Scholar 

  • Rodrigues PG, Martinelli AG, Schultz CL et al (2019) Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts. Hist Biol 31(9):1195–1212

    Google Scholar 

  • Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244

    Article  PubMed  Google Scholar 

  • Romer AS (1956) Osteology of the reptilia. University of Chicago Press, Chicago

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology. University of Chicago Press, Chicago

    Google Scholar 

  • Romer AS (1970) The Chanares (Argentina) Triassic reptile fauna: 6. A chiniquodontid cynodont with an incipient squamosal-dentary jaw articulation. Breviora 344:1–18

    Google Scholar 

  • Romer AS, Edinger T (1942) Endocranial casts and brains of living and fossil Amphibia. J Comp Neurol 77(2):355–389

    Article  Google Scholar 

  • Romer AS, Price LW (1940) Review of the pelycosauria. Geol Soc Amer Spec Pap 28:1–534

    Google Scholar 

  • Rowe TB (1988) Definition, diagnosis and origin of Mammalia. J Vertebr Paleontol 8(3):241–264

    Article  Google Scholar 

  • Rowe TB (1993) Phylogenetic systematics and the early history of mammals. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammalian phylogeny. Springer, New York, pp 129–145

    Chapter  Google Scholar 

  • Rowe TB (1996a) Coevolution of the mammalian middle ear and neocortex. Science 273:651–654

    Article  PubMed  CAS  Google Scholar 

  • Rowe TB (1996b) Brain heterochrony and evolution of the mammalian middle ear. In: Ghiselin MG, Pinna, G (eds) New perspectives on the history of life. Calif Acad Sci Memoir 20:71–96

    Google Scholar 

  • Rowe TB (2004) Chordate phylogeny and development. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, Oxford/New York, pp 384–409

    Google Scholar 

  • Rowe TB (2020a) The emergence of mammals. In: Kaas JA (ed) Evolutionary neurosciences, 2nd edn. Elsevier, New York, pp 263–319

    Chapter  Google Scholar 

  • Rowe TB (2020b) Mammalia. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 841–847

    Google Scholar 

  • Rowe TB (2020c) Pan-Mammalia. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 783–791

    Google Scholar 

  • Rowe TB (2020d) Therapsida. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 797–808

    Google Scholar 

  • Rowe TB (2020e) Cynodontia. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 813–823

    Google Scholar 

  • Rowe TB (2020f) Mammaliamorpha. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 825–831

    Google Scholar 

  • Rowe TB (2020g) Mammaliaformes. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 833–839

    Google Scholar 

  • Rowe TB, Shepherd GM (2016) The role of ortho-retronasal olfaction in mammalian cortical evolution. J Comp Neurol 524:471–495. https://doi.org/10.1002/cne.23802

    Article  PubMed  Google Scholar 

  • Rowe TB, Carlson W, Bottorff W (1995) Thrinaxodon: digital atlas of the skull. CD-ROM, 2nd edn. University of Texas Press, Austin

    Google Scholar 

  • Rowe TB, Eiting TP, Macrini TE et al (2005) Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed Opossum Monodelphis domestica. J Mammal Evol 12:303–336

    Article  Google Scholar 

  • Rowe TB, Rich TH, Vickers-Rich P et al (2008) The oldest Platypus, and its bearing on divergence timing of the Platypus and Echidna Clades. PNAS 105:1238–1242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rowe TB, Macrini TE, Luo Z-X (2011) Fossil evidence on origin of the mammalian brain. Science 332:955–957. https://doi.org/10.1126/science.1203117

    Article  PubMed  CAS  Google Scholar 

  • Rowe TB, Wallace RVS, Bhullar BAS (2020) Monotremata. In: de Queiroz K, Cantino PD, Gauthier JA (eds) Phylonyms: a companion to the PhyloCode. CRC Press, Boca Raton, pp 833–839

    Google Scholar 

  • Rubenstein JL, Rakic P (1999) Genetic control of cortical development. Cereb Cortex 9(6):521–523

    Article  PubMed  CAS  Google Scholar 

  • Rubidge BS, Sidor CA (2001) Evolutionary patterns among Permo-Triassic therapsids. Ann Rev Ecol Syst 32:449–480

    Article  Google Scholar 

  • Schlosser G (2010) Making senses: development of vertebrate cranial placodes. Int Rev Cell Mol Biol 283:129–234

    Article  PubMed  CAS  Google Scholar 

  • Schlosser T (2017) Evolution of neural crest and cranial placodes. In: Kaas JA (ed) Evolution of nervous systems, vol 1. Elsevier, New York, pp 25–36

    Chapter  Google Scholar 

  • Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132–R142

    Article  PubMed  CAS  Google Scholar 

  • Sengel P (1976) Morphogenesis of skin. Cambridge University Press, Cambridge

    Google Scholar 

  • Shepherd GM (1991) Computational structure of the olfactory system. In: Eichenbaum HM, Davis J (eds) Olfaction: a model for computational neuroscience. MIT Press, Cambridge, MA, pp 3–42

    Google Scholar 

  • Shepherd GM (2004) The human sense of smell: are we better than we think? PLoS Biol 2:e146

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd GM (2006) Smell images and the flavour system in the human brain. Nature 444:316–321

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM (2011) The microcircuit concept applied to cortical evolution: from three-layer to six-layer cortex. Front Neuroanat 5(30):1–15

    Google Scholar 

  • Shepherd GM (2012) Neurogastronomy: how the brain creates flavor and why it matters. Columbia University Press, New York

    Google Scholar 

  • Shepherd GM, Rowe TB (2017) Neocortical lamination: insights from neuron types and evolutionary precursors. Front Neuroanat 11:100. https://doi.org/10.3389/fnana.2017.00100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shepherd GM, Rowe TB, Greer CA (2021) An evolutionary microcircuit approach to the neural basis of high dimensional sensory processing in olfaction and vision. Front Cell Neurosci 15(658480):1–23

    Google Scholar 

  • Sidor CA (2001) Simplification as a trend in synapsid cranial evolution. Evolution 55:1419–1442

    Article  PubMed  CAS  Google Scholar 

  • Sidor CA (2003) The naris and palate of Lycaenodon longiceps (Therapsida: Biarmosuchia), with comments on their early evolution in the Therapsida. J Paleontol 77:977–984

    Google Scholar 

  • Sidor CA, Hancox PJ (2006) Elliotherium kersteni, a new tritheledontid from the Lower Elliot Formation (Upper Triassic) of South Africa. J Vert Paleontol 80:333–342

    Article  Google Scholar 

  • Small DM, Bender G, Veldhuizen MG et al (2007) The role of the human orbitofrontal cortex in taste and flavor processing. Ann N Y Acad Sci 1121:136–151

    Article  PubMed  Google Scholar 

  • Streidter GF (2005) Principles of brain evolution. Sinauer, Sunderland

    Google Scholar 

  • Streidter GF, Northcutt G (2020) Brains through time – a natural history of vertebrates. Oxford University Press, Oxford

    Google Scholar 

  • Taylor CR (1977) Exercise and environmental heat loads: different mechanisms for solving different problems? Internat Rev Physiol 15:119–145

    CAS  Google Scholar 

  • Ten-Cate AR (1969) The mechanism of tooth eruption. In: Melcher AH, Bowen WH (eds) Biology of the Periodontium. Academic, New York, pp 91–103

    Google Scholar 

  • Ten-Cate AR (1997) The development of the periodontium—a largely ectomesenchymally derived unit. Periodontology 2000 13(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Trulsson M (2006) Sensory motor function of human periodontal mechanoreceptors. J Oral Rehabil 33(4):262–273

    Article  PubMed  CAS  Google Scholar 

  • Trulsson M, Francis ST, Bowtell R et al (2010) Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study. J Neurophysiol 104(4):2257–2265

    Article  PubMed  Google Scholar 

  • Ulinski PS (1983) Dorsal ventricular ridge: a treatise on forebrain organization in reptiles and birds. Wiley, New York

    Google Scholar 

  • Van Valkenburgh B, Theodor J, Friscia A et al (2004) Respiratory turbinates of canids and felids: A quantitative comparison. J Zool 264:1–13

    Article  Google Scholar 

  • Wagner G (2014) Homology, genes, and evolutionary innovation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wakefield MJ, Anderson M, Chang E et al (2008) Cone visual pigments of monotremes: filling the phylogenetic gap. Visual Neurosci 25(3):257–264

    Article  Google Scholar 

  • Wallace RVS (2018) A new close mammal relative and the origin and evolution of the mammalian central nervous system. Dissertation, University of Texas at Austin

    Google Scholar 

  • Wallace RVS, Martínez R, Rowe T (2019) First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina. PLoS ONE 14(8):e0218791. https://doi.org/10.1371/journal.pone.0218791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner Publishing Company, New York

    Google Scholar 

  • Wang Y, Hu Y, Meng J et al (2001) An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 294:357–361

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A et al (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45(6):701–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisbecker V, Rowe TB, Wroe S et al (2021) Global elongation and high shape flexibility as an evolutionary hypothesis of accommodating mammalian brains into skulls. Evolution 75(3):625–640

    Article  PubMed  Google Scholar 

  • Wilson DA, Stevenson RJ (2006) Learning to smell - olfactory perception from neurobiology to behavior. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Witmer L (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason J (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 19–33

    Google Scholar 

  • Yohe LR, Fabbri M, Hanson M et al (2020) Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change. Curr Zool 66(5):505–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JM, Massa HF, Hsu L, Trask BJ (2010) Extreme variability among mammalian V1R gene families. Genome Res 20(1):10–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zelená J (1994) Nerves and mechanoreceptors: the role of innervation in the development and maintenance of mammalian mechanoreceptors. Springer, Dordrecht

    Google Scholar 

  • Zhou Y, Shearwin-Whyatt L, Li J et al (2021) Platypus and echidna genomes reveal mammalian biology and evolution. Nature 2021(1). https://doi.org/10.1038/s41586-020-03039-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy B. Rowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowe, T.B. (2023). Evolution of the Mammalian Neurosensory System: Fossil Evidence and Major Events. In: Dozo, M.T., Paulina-Carabajal, A., Macrini, T.E., Walsh, S. (eds) Paleoneurology of Amniotes . Springer, Cham. https://doi.org/10.1007/978-3-031-13983-3_10

Download citation

Publish with us

Policies and ethics