Skip to main content

The Quest of Electropromoted Nano-dispersed Catalysts

  • Chapter
  • First Online:
Recent Advances in Electrochemical Promotion of Catalysis

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 61))

  • 595 Accesses

Abstract

Electrochemical promotion of catalysis (EPOC) also known as non-Faradaic electrochemical modification of catalytic activity (NEMCA) phenomenon of nano-dispersed catalytic systems has been of paramount interest since the pioneering studies of Vayenas and co-workers in the 1980s. A typical heterogeneous catalyst consists of a nano-sized active phase dispersed on high-surface-area support. This allows decreasing the noble metal catalyst loading while considerably increasing the number of surface-active sites available for the reaction. In EPOC studies the catalyst-working electrode is often fabricated as a continuous, porous film with low dispersion; however, more and more works on the fabrication and study of EPOC with nanostructured, dispersed catalysts have emerged recently. This chapter presents a review of EPOC studies with nano-sized, electropromoted catalytic systems reported in the last decade. The first section discusses the origin of EPOC, the main parameters, and the rules. The second part provides the observation of the EPOC effect for both noble and non-noble nanoparticle catalysts. The third part examines recent advances in density functional theory (DFT) for the understanding of electrified interfaces in catalysis, followed by recent advances in self-sustained EPOC. Finally, the last section highlights the research gaps in understanding and applying electrochemically promoted nanostructured catalysts to technologically important processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALD:

Atomic layer deposition

BZY:

BaZr0.85Y0.15O3-α

DFT :

Density functional theory

DLC:

Diamond-like carbon

EDX:

Energy-dispersive X-ray

EMF:

Electromotive force

EPOC :

Electrochemical promotion of catalysis

GO:

Graphene oxide

LSCF/GDC:

La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.9Gd0.1O1.95

LSM/GDC:

(La0.8Sr0.2)0.95 MnO3-δ/Ce0.9Gd0.1O1.95

MIEC :

Mixed ionic-electronic conductive

MSI:

Metal-support interaction

NAS-XPS:

Near-ambient pressure X-ray photoelectron spectroscopy

NEMCA:

Non-Faradaic electrochemical modification of catalytic activity

NPs:

Nanoparticles

P-EPOC:

Permanent or persistent electrochemical promotion of catalysis

PM-IRRAS:

Polarization modulation infrared reflection absorption spectroscopy

PVD:

Physical vapor deposition

PVP:

Polyvinylpyrrolidone

RHE:

Reversible hydrogen electrode

RWGS:

Reverse water-gas shift

SHE:

Standard hydrogen electrode

SMSI:

Strong metal-support interaction

SRM:

Steam reforming of methanol

SSEP :

Self-sustained electrochemical promotion

SS-EPOC :

Self-sustained electrochemical promotion of catalysis

TGA:

Thermogravimetric analysis

TMAOH:

Tetramethylammonium hydroxide

TOF :

Turnover frequency

tpb:

Three-phase boundary

TPD:

Temperature program desorption

VOCs :

Volatile organic compounds

WGS:

Water-gas shift

XAS:

X-ray absorption spectroscopy

YSZ :

Yttria-stabilized zirconia

References

  1. Stoukides M, Vayenas CG (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. J Catal 70:137–146. https://doi.org/10.1016/0021-9517(81)90323-7

    Article  CAS  Google Scholar 

  2. Bebelis S, Vayanes CG (1989) Non-faradaic electrochemical modification of catalytic activity 1. The case of ethylene oxidation on Pt. J Catal 118:125–146. https://doi.org/10.1016/0021-9517(89)90306-0

    Article  CAS  Google Scholar 

  3. Vayanes CG, Bebelis S (1999) Electrochemical promotion of heterogeneous catalysis. Catal Today 51:581–594. https://doi.org/10.1016/S0920-5861(99)00042-5

    Article  Google Scholar 

  4. Vayenas CG, Bebelis S, Pliangos C, Brosda S (2001) Electrochemical activation of catalysis promotion, electrochemical promotion, and metal-support interactions. Kluwer Academic Publishers

    Google Scholar 

  5. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260. https://doi.org/10.1021/cr4000336

    Article  CAS  PubMed  Google Scholar 

  6. Urquhart AJ, Williams FJ, Lambert RM (2005) Electrochemical promotion by potassium of Rh-catalysed fischer-tropsch synthesis at high pressure. Catal Lett 103:137–141. https://doi.org/10.1007/s10562-005-6519-1

    Article  CAS  Google Scholar 

  7. Panaritis C, Edake M, Couillard M, Einakchi R, Baranova EA (2018) Insight towards the role of ceria-based supports for reverse water gas shift reaction over RuFe nanoparticles. J CO2 Util 26:350–358. https://doi.org/10.1016/j.jcou.2018.05.024

    Article  CAS  Google Scholar 

  8. Isaifan RJ, Baranova EA (2013) Catalytic electrooxidation of volatile organic compounds by oxygen-ion conducting ceramics in oxygen-free gas environment. Electrochem Commun 27:164–167. https://doi.org/10.1016/j.elecom.2012.11.021

    Article  CAS  Google Scholar 

  9. Kalaitzidou I, Zagoraios D, Brosda S, Katsaounis A, Vernoux P, Vayenas CG (2018) Electrochemical promotion of methane oxidation on Pd nanoparticles deposited on YSZ. Mater Today Proc 5:27345–27352. https://doi.org/10.1016/J.MATPR.2018.09.050

    Article  CAS  Google Scholar 

  10. Jiménez-Borja C, Dorado F, de Lucas-Consuegra A, Vargas JMG, Valverde JL (2011) Electrochemical promotion of CH4 combustion over a Pd/CeO2–YSZ catalyst. Fuel Cells 11:131–139. https://doi.org/10.1002/fuce.201000058

    Article  CAS  Google Scholar 

  11. Nakos A, Souentie S, Katsaounis A (2010) Electrochemical promotion of methane oxidation on Rh/YSZ. Appl Catal B Environ 101:31–37. https://doi.org/10.1016/J.APCATB.2010.08.030

    Article  CAS  Google Scholar 

  12. López ER, Dorado F, de Lucas-Consuegra A (2019) Electrochemical promotion for hydrogen production via ethanol steam reforming reaction. Appl Catal B Environ 243:355–364. https://doi.org/10.1016/j.apcatb.2018.10.062

    Article  CAS  Google Scholar 

  13. De Lucas-Consuegra A, González-Cobos J, Carcelén V, Magén C, Endrino JL, Valverde JL (2013) Electrochemical promotion of Pt nanoparticles dispersed on a diamond-like carbon matrix: a novel electrocatalytic system for H2 production. J Catal 307:18–26. https://doi.org/10.1016/j.jcat.2013.06.012

    Article  CAS  Google Scholar 

  14. Vernoux P (2017) Recent advances in electrochemical promotion of catalysis. Catalysis 29:29–59. https://doi.org/10.1039/9781788010634-00029

    Article  CAS  Google Scholar 

  15. Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosda S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite ni or ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107:210–220. https://doi.org/10.1016/j.apcatb.2011.07.016

    Article  CAS  Google Scholar 

  16. Zagoraios D, Panaritis C, Krassakopoulou A, Baranova EA, Katsaounis A, Vayenas CG (2020) Electrochemical promotion of Ru nanoparticles deposited on a proton conductor electrolyte during CO2 hydrogenation. Appl Catal B Environ 276:119148. https://doi.org/10.1016/j.apcatb.2020.119148

    Article  CAS  Google Scholar 

  17. Panaritis C, Zgheib J, Ebrahim SAH, Couillard M, Baranova EA (2020) Electrochemical in-situ activation of Fe-oxide nanowires for the reverse water gas shift reaction. Appl Catal B Environ 269:118826. https://doi.org/10.1016/j.apcatb.2020.118826

    Article  CAS  Google Scholar 

  18. Fellah Jahromi A, Ruiz-López E, Dorado F, Baranova EA, de Lucas-Consuegra A (2022) Electrochemical promotion of ethanol partial oxidation and reforming reactions for hydrogen production. Renew Energy 183:515–523. https://doi.org/10.1016/J.RENENE.2021.11.041

    Article  Google Scholar 

  19. Shim JH, Park JS, Holme TP, Crabb K, Lee W, Kim YB, Tian X, Gür TM, Prinz FB (2012) Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. Acta Mater 60:1–7. https://doi.org/10.1016/J.ACTAMAT.2011.09.050

    Article  CAS  Google Scholar 

  20. Siebert E, Djurado E, Pagnier T, Roux C, Vernoux P (2005) In-situ high temperature study of oxygen adsorbed on Pt/YSZ under conditions of electrochemical promotion of catalysis. In: Risoe international symposium on materials science. Roskilde

    Google Scholar 

  21. Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157–7168. https://doi.org/10.1103/PhysRevB.46.7157

    Article  CAS  Google Scholar 

  22. Vayenas CG, Brosda S (2014) Electron donation-Backdonation and the rules of catalytic promotion. Top Catal 57:1287–1301. https://doi.org/10.1007/s11244-014-0294-4

    Article  CAS  Google Scholar 

  23. Vayenas CG, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion: 1. Reaction classification and promotional rules. J Catal 203:329–350. https://doi.org/10.1006/jcat.2001.3348

    Article  CAS  Google Scholar 

  24. Brosda S, Vayenas CG (2002) Rules and mathematical modeling of electrochemical and classical promotion: 2. Modeling. J Catal 208:38–53. https://doi.org/10.1006/jcat.2002.3549

    Article  CAS  Google Scholar 

  25. Brosda S, Vayenas CG, Wei J (2006) Rules of chemical promotion. Appl Catal B Environ 68:109–124. https://doi.org/10.1016/j.apcatb.2006.07.021

    Article  CAS  Google Scholar 

  26. Nicole J, Tsiplakides D, Wodiunig S, Comninellis C (1997) Activation of catalyst for gas-phase combustion by electrochemical pretreatment. J Electrochem Soc 144. https://doi.org/10.1149/1.1838143

  27. González-Cobos J, de Lucas-Consuegra A (2016) A review of surface analysis techniques for the investigation of the phenomenon of electrochemical promotion of catalysis with alkaline ionic conductors. Catalysts 6. https://doi.org/10.3390/catal6010015

  28. Yentekakis IV, Vernoux P, Goula G, Caravaca A (2019) Electropositive promotion by alkalis or alkaline earths of Pt-group metals in emissions control catalysis: a status report. Catalysts 9:157. https://doi.org/10.3390/catal9020157

    Article  CAS  Google Scholar 

  29. Katsaounis A (2009) Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 405(40):885–902. https://doi.org/10.1007/S10800-009-9938-7

    Article  Google Scholar 

  30. Isaifan RJ, Dole HAE, Obeid E, Lizarraga L, Vernoux P, Baranova EA (2012) Metal-support interaction of Pt nanoparticles with ionically and non-ionically conductive supports for CO oxidation. Electrochem Solid-State Lett 15:E14. https://doi.org/10.1149/2.024203esl

    Article  CAS  Google Scholar 

  31. Xia C, Hugentobler M, Li Y, Foti G, Comninellis C, Harbich W (2011) Electrochemical promotion of CO combustion over non-percolated Pt particles supported on YSZ using a novel bipolar configuration. Electrochem Commun 13:99–101. https://doi.org/10.1016/j.elecom.2010.11.026

    Article  CAS  Google Scholar 

  32. Marwood M, Vayenas CG (1998) Electrochemical promotion of a dispersed platinum catalyst. J Catal 178:429–440. https://doi.org/10.1006/jcat.1998.2156

    Article  CAS  Google Scholar 

  33. Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) Electrochemical promotion of propane and propene oxidation on Pt/YSZ. J Catal 208. https://doi.org/10.1006/jcat.2002.3573

  34. Dole HAE, Isaifan RJ, Sapountzi FM, Lizarraga L, Aubert D, Princivalle A, Vernoux P, Baranova EA (2013) Low temperature toluene oxidation over Pt nanoparticles supported on yttria stabilized-zirconia. Catal Lett 143:996–1002. https://doi.org/10.1007/s10562-013-1071-x

    Article  CAS  Google Scholar 

  35. Souentie S, Lizarraga L, Kambolis A, Alves-Fortunato M, Valverde JL, Vernoux P (2011) Electrochemical promotion of the water-gas shift reaction on Pt/YSZ. J Catal 283:124–132. https://doi.org/10.1016/j.jcat.2011.07.009

    Article  CAS  Google Scholar 

  36. Palma V, Ruocco C, Cortese M, Renda S, Meloni E, Festa G, Martino M (2020) Platinum based catalysts in the water gas shift reaction: recent advances. Metals (Basel) 10:1–74. https://doi.org/10.3390/met10070866

    Article  CAS  Google Scholar 

  37. Roche V, Revel R, Vernoux P (2010) Electrochemical promotion of YSZ monolith honeycomb for deep oxidation of methane. Catal Commun 11. https://doi.org/10.1016/j.catcom.2010.05.005

  38. De Lucas-Consuegra A, Caravaca A, Martínez PJ, Endrino JL, Dorado F, Valverde JL (2010) Development of a new electrochemical catalyst with an electrochemically assisted regeneration ability for H2 production at low temperatures. J Catal 274:251–258. https://doi.org/10.1016/j.jcat.2010.07.007

    Article  CAS  Google Scholar 

  39. Xia C, Hugentobler M, Yongdan-Li CC, Harbich W (2010) Quantifying electrochemical promotion of induced bipolar Pt particles supported on YSZ. Electrochem Commun 12:1551–1554. https://doi.org/10.1016/j.elecom.2010.08.031

    Article  CAS  Google Scholar 

  40. Falgairette C, Xia C, Li Y, Harbich W, Foti G, Comninellis C (2010) Investigation of the Pt/YSZ interface at low oxygen partial pressure by solid electrochemical mass spectroscopy under high vacuum conditions. J Appl Electrochem 4010(40):1901–1907. https://doi.org/10.1007/S10800-010-0160-4

    Article  Google Scholar 

  41. Jaccoud A, Falgairette C, Fóti G, Comninellis C (2007) Charge storage in the O2(g),Pt/YSZ system. Electrochim Acta 52:7927–7935. doi: https://doi.org/10.1016/j.electacta.2007.06.046

  42. Kambolis A, Lizarraga L, Tsampas MN, Burel L, Rieu M, Viricelle J-P, Vernoux P (2012) Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochem Commun:19. https://doi.org/10.1016/j.elecom.2012.02.041

  43. Li X, Gaillard F, Vernoux P (2005) The relationship of the catalytic activity and the open-circuit potential of Pt interfaced with YSZ. Ionics 111(11):103–111. https://doi.org/10.1007/BF02430408

    Article  Google Scholar 

  44. Fortunato MA, Princivalle A, Capdeillayre C, Petigny N, Tardivat C, Guizard C, Tsampas MN, Sapountzi FM, Vernoux P (2014) Role of lattice oxygen in the propane combustion over Pt/Yttria-stabilized zirconia: isotopic studies. Top Catal 57:1277–1286. https://doi.org/10.1007/s11244-014-0293-5

    Article  CAS  Google Scholar 

  45. De Lucas-Consuegra A, González-Cobos J, García-Rodríguez Y, Mosquera A, Endrino JL, Valverde JL (2012) Enhancing the catalytic activity and selectivity of the partial oxidation of methanol by electrochemical promotion. J Catal 293:149–157. https://doi.org/10.1016/j.jcat.2012.06.016

    Article  CAS  Google Scholar 

  46. De Lucas-Consuegra A, González-Cobos J, Gacia-Rodriguez Y, Endrino JL, Valverde JL (2012) Electrochemical activation of the catalytic methanol reforming reaction for H 2 production. Electrochem Commun 19:55–58. https://doi.org/10.1016/j.elecom.2012.03.016

    Article  CAS  Google Scholar 

  47. Hajar Y, Di Palma V, Kyriakou V, Verheijen MA, Baranova EA, Vernoux P, Kessels WMM, Creatore M, van de Sanden MCM, Tsampas M (2017) Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis. Electrochem Commun:84. https://doi.org/10.1016/j.elecom.2017.09.023

  48. Hajar YM, Patel KD, Tariq U, Baranova EA (2017) Functional equivalence of electrochemical promotion and metal support interaction for Pt and RuO2 nanoparticles. J Catal 352:42–51. https://doi.org/10.1016/j.jcat.2017.05.001

    Article  CAS  Google Scholar 

  49. Baranova EA, Bock C, Ilin D, Wang D, MacDougall B (2006) Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts. Surf Sci 600:3502–3511. https://doi.org/10.1016/j.susc.2006.07.005

    Article  CAS  Google Scholar 

  50. Yeung KL, Christiansen SC, Varma A (1999) Palladium composite membranes by electroless plating technique: relationships between plating kinetics, film microstructure and membrane performance. J Memb Sci 159:107–122. https://doi.org/10.1016/S0376-7388(99)00041-1

    Article  CAS  Google Scholar 

  51. Matei F, Jiménez-Borja C, Canales-Vázquez J, Brosda S, Dorado F, Valverde JL, Ciuparu D (2013) Enhanced electropromotion of methane combustion on palladium catalysts deposited on highly porous supports. Appl Catal B Environ 132–133:80–89. https://doi.org/10.1016/j.apcatb.2012.11.011

    Article  CAS  Google Scholar 

  52. Zagoraios D, Athanasiadi A, Kalaitzidou I, Ntais S, Katsaounis A, Caravaca A, Vernoux P, Vayenas CG (2020) Electrochemical promotion of methane oxidation over nanodispersed Pd/Co3O4 catalysts. Catal Today 355:910–920. https://doi.org/10.1016/J.CATTOD.2019.02.030

    Article  CAS  Google Scholar 

  53. Hajar YM, Venkatesh B, Baranova EA (2019) Electrochemical promotion of nanostructured palladium catalyst for complete methane oxidation. Catalysts 9:48. https://doi.org/10.3390/catal9010048

    Article  CAS  Google Scholar 

  54. Hajar YM, Venkatesh B, Houache MSE, Liu H, Safari R, Prabhudev S, Botton GA, Baranova EA (2019) Electrochemical promotion of Bi-metallic Ni9Pd core double-shell nanoparticles for complete methane oxidation. J Catal 374:127–135. https://doi.org/10.1016/j.jcat.2019.04.026

    Article  CAS  Google Scholar 

  55. Chang Q, Xu Y, Duan Z, Xiao F, Fu F, Hong Y, Kim J, Choi S-I, Su D, Shao M (2017) Structural evolution of Sub-10 nm octahedral platinum–nickel bimetallic nanocrystals. Nano Lett 17:3926–3931. https://doi.org/10.1021/ACS.NANOLETT.7B01510

    Article  CAS  PubMed  Google Scholar 

  56. Bebelis S, Karasali H, Vayenas CG (2008) Electrochemical promotion of the CO2 hydrogenation on Pd/YSZ and Pd/β″-Al2O3 catalyst-electrodes. Solid State Ionics 179:1391–1395. https://doi.org/10.1016/j.ssi.2008.02.043

    Article  CAS  Google Scholar 

  57. Cai F, Gao D, Zhou H, Wang G, He T, Gong H, Miao S, Yang F, Wang J, Bao X (2017) Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem Sci 8:2569–2573. https://doi.org/10.1039/c6sc04966d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Solymosi F, Erdöhelyi A (1980) Hydrogenation of CO2 to CH4 over alumina-supported noble metals. J Mol Catal 8:471–474. https://doi.org/10.1016/0304-5102(80)80086-1

    Article  CAS  Google Scholar 

  59. Ryu J, Surendranath Y (2020) Polarization-induced local pH swing promotes Pd-catalyzed CO2 hydrogenation. J Am Chem Soc 142:13384–13390. https://doi.org/10.1021/jacs.0c01123

    Article  CAS  PubMed  Google Scholar 

  60. Fuel Cell Store (2020) Fuel cell store

    Google Scholar 

  61. Hajar YM, Treps L, Michel C, Baranova EA, Steinmann SN (2019) Theoretical insight into the origin of the electrochemical promotion of ethylene oxidation on ruthenium oxide. Cat Sci Technol 9:5915–5926. https://doi.org/10.1039/c9cy01421g

    Article  CAS  Google Scholar 

  62. Panaritis C, Michel C, Couillard M, Baranova EA, Steinmann SN (2020) Elucidating the role of electrochemical polarization on the selectivity of the CO2 hydrogenation reaction over Ru. Electrochim Acta 350:136405. https://doi.org/10.1016/j.electacta.2020.136405

    Article  CAS  Google Scholar 

  63. Kotsiras A, Kalaitzidou I, Grigoriou D, Symillidis A, Makri M, Katsaounis A, Vayenas CG (2018) Electrochemical promotion of nanodispersed Ru-Co catalysts for the hydrogenation of CO2. Appl Catal B Environ 232:60–68. https://doi.org/10.1016/j.apcatb.2018.03.031

    Article  CAS  Google Scholar 

  64. Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas CG (2012) Hydrogenation of CO2 over Ru/YSZ Electropromoted catalysts. ACS Catal 2:770–780. https://doi.org/10.1021/CS300072A

    Article  CAS  Google Scholar 

  65. Theleritis D, Makri M, Souentie S, Caravaca A, Katsaounis A, Vayenas CG (2014) Comparative study of the electrochemical promotion of CO2 hydrogenation over Ru-supported catalysts using electronegative and electropositive promoters. ChemElectroChem 1:254–262. https://doi.org/10.1002/CELC.201300185

    Article  Google Scholar 

  66. Kalaitzidou I, Makri M, Theleritis D, Katsaounis A, Vayenas CG (2016) Comparative study of the electrochemical promotion of CO2 hydrogenation on Ru using Na+, K+, H+ and O2- conducting solid electrolytes. Surf Sci 646:194–203. https://doi.org/10.1016/j.susc.2015.09.011

    Article  CAS  Google Scholar 

  67. Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis C, Vayenas CG (2005) Electrochemical promotion of ethylene oxidation over Rh catalyst thin films sputtered on YSZ and TiO[sub 2]/YSZ supports. J Electrochem Soc 152:E40. https://doi.org/10.1149/1.1839511

    Article  CAS  Google Scholar 

  68. Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis C, Vayenas CG (2005) Electrochemically induced oscillations of C2H4 oxidation over thin sputtered Rh catalyst films. Catal Lett 1051(105):15–21. https://doi.org/10.1007/S10562-005-7999-8

    Article  Google Scholar 

  69. Pliangos C, Yentekakis IV, Verykios XE, Vayenas CG (1995) Non-faradaic electrochemical modification of catalytic activity: VIII. Rh-catalyzed C2H4 oxidation. J Catal 154:124–136. https://doi.org/10.1006/JCAT.1995.1154

    Article  CAS  Google Scholar 

  70. Katsaounis A, Teschner D, Zafeiratos S (2018) The effect of polarization and reaction mixture on the Rh/YSZ oxidation state during ethylene oxidation studied by near ambient pressure XPS. Top Catal 61:2142–2151. https://doi.org/10.1007/s11244-018-1073-4

    Article  CAS  Google Scholar 

  71. Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal–support interactions: 2. CO oxidation by 18O2 on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. J Catal 226:197–209. https://doi.org/10.1016/J.JCAT.2004.05.009

    Article  CAS  Google Scholar 

  72. Vayenas CG, Koutsodontis CG (2008) Non-faradaic electrochemical activation of catalysis. J Chem Phys 128:182506. https://doi.org/10.1063/1.2824944

    Article  CAS  PubMed  Google Scholar 

  73. Kishi K, Daté M, Haruta M (2001) Effect of gold on the oxidation of the Si(1 1 1)-7×7 surface. Surf Sci 486:L475–L479. https://doi.org/10.1016/S0039-6028(01)01083-4

    Article  CAS  Google Scholar 

  74. Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Rec 3:75–87. https://doi.org/10.1002/TCR.10053

    Article  CAS  PubMed  Google Scholar 

  75. Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. ChemInform 35. https://doi.org/10.1002/CHIN.200444247

  76. González-Cobos J, Horwat D, Ghanbaja J, Valverde JL, De Lucas-Consuegra A (2014) Electrochemical activation of Au nanoparticles for the selective partial oxidation of methanol. J Catal 317:293–302. https://doi.org/10.1016/j.jcat.2014.06.022

    Article  CAS  Google Scholar 

  77. Pestryakov AN, Lunin VV, Bogdanchikova N, Temkin ON, Smolentseva E (2013) Active states of gold in small and big metal particles in CO and methanol selective oxidation. Fuel 110:48–53. https://doi.org/10.1016/J.FUEL.2012.10.012

    Article  CAS  Google Scholar 

  78. Chang FW, Lai SC, Roselin LS (2008) Hydrogen production by partial oxidation of methanol over ZnO-promoted Au/Al2O3 catalysts. J Mol Catal A Chem 282:129–135. https://doi.org/10.1016/J.MOLCATA.2007.12.002

    Article  CAS  Google Scholar 

  79. Kähler K, Holz MC, Rohe M, Van Veen AC, Muhler M (2013) Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts. J Catal 299:162–170. https://doi.org/10.1016/J.JCAT.2012.12.001

    Article  Google Scholar 

  80. Cavoué T, Caravaca A, Kalaitzidou I, Gaillard F, Rieu M, Viricelle JP, Vernoux P (2019) Ethylene epoxidation on Ag/YSZ electrochemical catalysts: understanding of oxygen electrode reactions. Electrochem Commun 105:106495. https://doi.org/10.1016/j.elecom.2019.106495

    Article  CAS  Google Scholar 

  81. Fee M, Ntais S, Weck A, Baranova EA (2014) Electrochemical behavior of silver thin films interfaced with yttria-stabilized zirconia. J Solid State Electrochem 188(18):2267–2277. https://doi.org/10.1007/S10008-014-2477-0

    Article  Google Scholar 

  82. Kalaitzidou I, Cavoué T, Boreave A, Burel L, Gaillard F, Retailleau-Mevel L, Baranova EA, Rieu M, Viricelle JP, Horwat D, Vernoux P (2018) Electrochemical promotion of propylene combustion on Ag catalytic coatings. Catal Commun 104:28–31. https://doi.org/10.1016/j.catcom.2017.10.005

    Article  CAS  Google Scholar 

  83. González-Cobos J, Rico VJ, González-Elipe AR, Valverde JL, De Lucas-Consuegra A (2015) Electrochemical activation of an oblique angle deposited Cu catalyst film for H2 production. Cat Sci Technol 5:2203–2214. https://doi.org/10.1039/c4cy01524j

    Article  CAS  Google Scholar 

  84. Ruiz E, Cillero D, Martínez PJ, Morales Á, Vicente GS, De Diego G, Sánchez JM (2014) Electrochemical synthesis of fuels by CO2 hydrogenation on Cu in a potassium ion conducting membrane reactor at bench scale. Catal Today 236:108–120. https://doi.org/10.1016/j.cattod.2014.01.016

    Article  CAS  Google Scholar 

  85. Wang J, Couillard M, Baranova E (2022) Electrochemical promotion of copper nanoparticles for the reverse water gas shift reaction. Cat Sci Technol. https://doi.org/10.1039/D1CY02315B

  86. Persson K, Ersson A, Colussi S, Trovarelli A, Järås SG (2006) Catalytic combustion of methane over bimetallic Pd–Pt catalysts: the influence of support materials. Appl Catal B Environ 66:175–185. https://doi.org/10.1016/J.APCATB.2006.03.010

    Article  CAS  Google Scholar 

  87. Persson K, Ersson A, Jansson K, Iverlund N, Järås S (2005) Influence of co-metals on bimetallic palladium catalysts for methane combustion. J Catal 231:139–150. https://doi.org/10.1016/J.JCAT.2005.01.001

    Article  CAS  Google Scholar 

  88. Gutiérrez-Guerra N, González-Cobos J, Serrano-Ruiz JC, Valverde JL, De Lucas-Consuegra A (2015) Electrochemical activation of Ni catalysts with potassium ionic conductors for CO2 hydrogenation. Top Catal 58:1256–1269. https://doi.org/10.1007/s11244-015-0488-4

    Article  CAS  Google Scholar 

  89. González-Cobos J, Rico VJ, González-Elipe AR, Valverde JL, De Lucas-Consuegra A (2016) Electrocatalytic system for the simultaneous hydrogen production and storage from methanol. ACS Catal 6:1942–1951. https://doi.org/10.1021/acscatal.5b02844

    Article  CAS  Google Scholar 

  90. Espinós JP, Rico VJ, González-Cobos J, Sánchez-Valencia JR, Pérez-Dieste V, Escudero C, de Lucas-Consuegra A, González-Elipe AR (2018) In situ monitoring of the phenomenon of electrochemical promotion of catalysis. J Catal 358:27–34. https://doi.org/10.1016/j.jcat.2017.11.027

    Article  CAS  Google Scholar 

  91. De Lucas-Consuegra A, Caravaca A, González-Cobos J, Valverde JL, Dorado F (2011) Electrochemical activation of a non noble metal catalyst for the water-gas shift reaction. Catal Commun 15:6–9. https://doi.org/10.1016/j.catcom.2011.08.007

    Article  CAS  Google Scholar 

  92. Panaritis C, Zgheib J, Couillard M, Baranova EA (2020) The role of Ru clusters in Fe carbide suppression for the reverse water gas shift reaction over electropromoted Ru/FeOx catalysts. Electrochem Commun 119:106824. https://doi.org/10.1016/j.elecom.2020.106824

    Article  CAS  Google Scholar 

  93. Zagoraios D, Tsatsos S, Kennou S, Vayenas CG, Kyriakou G, Katsaounis A (2020) Tuning the RWGS reaction via EPOC and in situ electro-oxidation of cobalt nanoparticles. ACS Catal:14916–14927. https://doi.org/10.1021/ACSCATAL.0C04133

  94. Leiva EPM, Vázquez C, Rojas MI, Mariscal MM (2008) Computer simulation of the effective double layer occurring on a catalyst surface under electro-chemical promotion conditions. J Appl Electrochem 38:1065–1073. https://doi.org/10.1007/S10800-008-9539-X/FIGURES/9

    Article  CAS  Google Scholar 

  95. Pacchioni G, Lomas JR, Illas F (1997) Electric field effects in heterogeneous catalysis. J Mol Catal A Chem 119:263–273. https://doi.org/10.1016/S1381-1169(96)00490-6

    Article  CAS  Google Scholar 

  96. Steinmann SN, Michel C, Schwiedernoch R, Filhol JS, Sautet P (2015) Modeling the HCOOH/CO2 electrocatalytic reaction: when details are key. ChemPhysChem 16:2307–2311. https://doi.org/10.1002/CPHC.201500187

    Article  CAS  PubMed  Google Scholar 

  97. Neophytides SG, Vayenas CG (1995) TPD and cyclic voltammetric investigation of the origin of electrochemical promotion in catalysis. J Phys Chem 99:17063–17067. https://doi.org/10.1021/j100047a001

    Article  CAS  Google Scholar 

  98. Ladas S, Kennou S, Bebelis S, Vayenas CG (2002) Origin of non-faradaic electrochemical modification of catalytic activity. J Phys Chem 97:8845–8848. https://doi.org/10.1021/J100137A004

    Article  Google Scholar 

  99. Tsampas MN, Sapountzi FM, Boréave A, Vernoux P (2013) Isotopical labeling mechanistic studies of electrochemical promotion of propane combustion on Pt/YSZ. Electrochem Commun 26. https://doi.org/10.1016/j.elecom.2012.09.043

  100. Panaritis C, Hajar YM, Treps L, Michel C, Baranova EA, Steinmann SN (2020) Demystifying the atomistic origin of the electric field effect on methane oxidation. J Phys Chem Lett 11:6976–6981. https://doi.org/10.1021/acs.jpclett.0c01485

    Article  CAS  PubMed  Google Scholar 

  101. Tsiakaras P, Vayenas CG (1993) Non-faradaic electrochemical modification of catalytic activity: VII. The case of methane oxidation on platinum. J Catal 140:53–70. https://doi.org/10.1006/JCAT.1993.1068

    Article  CAS  Google Scholar 

  102. Nicole J, Comninellis C, Tsiplakides D, Pliangos C, Verykios XE, Vayenas CG (2001) Electrochemical promotion and metal-support interactions. J Catal 204:23–34. https://doi.org/10.1006/jcat.2001.3360

    Article  CAS  Google Scholar 

  103. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175. https://doi.org/10.1021/ja00469a029

    Article  CAS  Google Scholar 

  104. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science (80–) 211:1121–1125. https://doi.org/10.1126/science.211.4487.1121

    Article  CAS  Google Scholar 

  105. Spichiger-Ulmann M, Monnier A, Koudelka M, Augustynski J (1986) Spectroscopic and electrochemical study of the state of Pt in Pt-TiO2 catalysts. ACS Symp Ser:212–227. https://doi.org/10.1021/BK-1986-0298.CH021

  106. Tauster SJ (2002) Strong metal-support interactions. Acc Chem Res 20:389–394. https://doi.org/10.1021/AR00143A001

    Article  Google Scholar 

  107. van Deelen TW, Hernández Mejía C, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 211(2):955–970. https://doi.org/10.1038/s41929-019-0364-x

    Article  CAS  Google Scholar 

  108. Chen MS, Goodman DW (2007) Interaction of Au with titania: the role of reduced Ti. Top Catal 44:41–47. https://doi.org/10.1007/s11244-007-0276-x

    Article  CAS  Google Scholar 

  109. Vernoux P, Guth M, Li X (2009) Ionically conducting ceramics as alternative catalyst supports. Electrochem Solid-State Lett 12. https://doi.org/10.1149/1.3122746

  110. Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG (2004) Comparative isotope-aided investigation of electrochemical promotion and metal-support interactions 1. 18O2 TPD of electropromoted Pt films deposited on YSZ and of dispersed Pt/YSZ catalysts. J Catal 222:192–206. https://doi.org/10.1016/j.jcat.2003.10.010

    Article  CAS  Google Scholar 

  111. Li X, Gaillard F, Vernoux P (2007) Investigations under real operating conditions of the electrochemical promotion by O2 temperature programmed desorption measurements. Top Catal 44. https://doi.org/10.1007/s11244-006-0131-5

  112. Dole HAE, Safady LF, Ntais S, Couillard M, Baranova EA (2014) Improved catalytic reactor for the electrochemical promotion of highly dispersed Ru nanoparticles with CeO2 support. In: ECS transactions. Electrochemical Society, pp 65–74

    Google Scholar 

  113. Isaifan R, Dole H, Obeid E, Lizarraga L, Baranova EA, Vernoux P (2011) Catalytic CO oxidation over Pt nanoparticles prepared from the polyol reduction method supported on Yttria-stabilized zirconia. ECS Trans 35:43. https://doi.org/10.1149/1.3641818

    Article  CAS  Google Scholar 

  114. Ntais S, Isaifan RJ, Baranova EA (2014) An X-ray photoelectron spectroscopy study of platinum nanoparticles on yttria-stabilized zirconia ionic support: insight into metal support interaction. Mater Chem Phys 148:673–679. https://doi.org/10.1016/J.MATCHEMPHYS.2014.08.033

    Article  CAS  Google Scholar 

  115. Isaifan RJ, Ntais S, Couillard M, Baranova EA (2015) Size-dependent activity of Pt/yttria-stabilized zirconia catalyst for ethylene and carbon monoxide oxidation in oxygen-free gas environment. J Catal 324:32–40. https://doi.org/10.1016/j.jcat.2015.01.010

    Article  CAS  Google Scholar 

  116. Dole HAE, Baranova EA (2016) Ethylene oxidation in an oxygen-deficient environment: why ceria is an active support? ChemCatChem 8:1977–1986. https://doi.org/10.1002/CCTC.201600142

    Article  CAS  Google Scholar 

  117. Dole HAE, Costa ACGSA, Couillard M, Baranova EA (2016) Quantifying metal support interaction in ceria-supported Pt, PtSn and Ru nanoparticles using electrochemical technique. J Catal 333:40–50. https://doi.org/10.1016/j.jcat.2015.10.015

    Article  CAS  Google Scholar 

  118. Isaifan RJ, Baranova EA (2015) Effect of ionically conductive supports on the catalytic activity of platinum and ruthenium nanoparticles for ethylene complete oxidation. Catal Today 241:107–113. https://doi.org/10.1016/j.cattod.2014.03.061

    Article  CAS  Google Scholar 

  119. Dole HA, Kim JM, Lizarraga L, Vernoux P, Baranova EA (2012) Catalytic CO oxidation over au nanoparticles supported on Yttria-stabilized zirconia. ECS Trans 45:265. https://doi.org/10.1149/1.3701316

    Article  CAS  Google Scholar 

  120. Hajar YM, Houache MSE, Tariq U, Vernoux P, Baranova EA (2017) Nanoscopic Ni interfaced with oxygen conductive supports: link between electrochemical and catalytic studies. ECS Trans 77:51–66. https://doi.org/10.1149/07710.0051ecst

    Article  CAS  Google Scholar 

  121. Eluri R, Paul B (2012) Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis. J Nanopart Res 14. https://doi.org/10.1007/s11051-012-0800-1

  122. González-Cobos J, López-Pedrajas D, Ruiz-López E, Valverde JL, de Lucas-Consuegra A (2015) Applications of the electrochemical promotion of catalysis in methanol conversion processes. Top Catal 58:1290–1302. https://doi.org/10.1007/s11244-015-0493-7

    Article  CAS  Google Scholar 

  123. Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ (2016) Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: a review. Ceram Int 42:35–48. https://doi.org/10.1016/J.CERAMINT.2015.09.006

    Article  CAS  Google Scholar 

  124. Panaritis C, Yan S, Couillard M, Baranova EA (2021) Electrochemical study of the metal-support interaction between FeOx nanoparticles and cobalt oxide support for the reverse water gas shift reaction. J CO2 Util 101824. https://doi.org/10.1016/J.JCOU.2021.101824

  125. Li K, Liu K, Ni H, Guan B, Zhan R, Huang Z, Lin H (2018) Electric field promoted ultra-lean methane oxidation over Pd-Ce-Zr catalysts at low temperature. Mol Catal 459:78–88. https://doi.org/10.1016/j.mcat.2018.08.021

    Article  CAS  Google Scholar 

  126. He L, Fan Y, Bellettre J, Yue J, Luo L (2020) A review on catalytic methane combustion at low temperatures: catalysts, mechanisms, reaction conditions and reactor designs. Renew Sust Energ Rev 119:109589. https://doi.org/10.1016/J.RSER.2019.109589

    Article  CAS  Google Scholar 

  127. Guan B, Lin H, Zhu L, Huang Z (2011) Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2−δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. J Phys Chem C 115:12850–12863. https://doi.org/10.1021/JP112283G

    Article  CAS  Google Scholar 

  128. Roy S, Viswanath B, Hegde MS, Madras G (2008) Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). J Phys Chem C 112:6002–6012. https://doi.org/10.1021/JP7117086/SUPPL_FILE/JP7117086-FILE002.PDF

    Article  CAS  Google Scholar 

  129. Zhao X, Xu D, Wang Y, Zheng Z, Li K, Zhang Y, Zhan R, Lin H (2021) Electric field assisted benzene oxidation over Pt-Ce-Zr nano-catalysts at low temperature. J Hazard Mater 407:124349. https://doi.org/10.1016/J.JHAZMAT.2020.124349

    Article  CAS  PubMed  Google Scholar 

  130. Shen F, Li K, Xu D, Li X, Zhao X, Chen T, Zhan R, Lin H (2019) Electric field promoted complete oxidation of benzene over PdCexCoy catalysts at low temperature. Catalysis 9:1071. https://doi.org/10.3390/CATAL9121071

    Article  CAS  Google Scholar 

  131. Mo S, Zhang Q, Li J, Sun Y, Ren Q, Zou S, Zhang Q, Lu J, Fu M, Mo D, Wu J, Huang H, Ye D (2020) Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl Catal B Environ 264:118464. https://doi.org/10.1016/J.APCATB.2019.118464

    Article  CAS  Google Scholar 

  132. Shen F, Li K, Xu D, Yan R, Chen T, Zhan R, Lin H (2019) Electric field promoted oxidation of naphthalene over Cu/Ce0.55Zr0.45Ox catalysts at low temperature. Mol Catal 476:110536. https://doi.org/10.1016/J.MCAT.2019.110536

  133. Li K, Xu D, Liu K, Ni H, Shen F, Chen T, Guan B, Zhan R, Huang Z, Lin H (2019) Catalytic combustion of lean methane assisted by an electric field over MnxCoy catalysts at low temperature. J Phys Chem C 123:10377–10388. https://doi.org/10.1021/ACS.JPCC.9B00496

    Article  CAS  Google Scholar 

  134. Monyoncho EA, Zamlynny V, Woo TK, Baranova EA (2018) The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and: in situ studies: new data processing and presentation approach. Analyst 143:2563–2573. https://doi.org/10.1039/c8an00572a

    Article  CAS  PubMed  Google Scholar 

  135. Urakawa A, Bürgi T, Schläpfer HP, Baiker A (2006) Simultaneous in situ monitoring of surface and gas species and surface properties by modulation excitation polarization-modulation infrared reflection-absorption spectroscopy: CO oxidation over Pt film. J Chem Phys 124:054717. https://doi.org/10.1063/1.2159484

    Article  CAS  PubMed  Google Scholar 

  136. Hernandez WY, Hadjar A, Giroir-Fendler A, Andy P, Princivalle A, Klotz M, Marouf A, Guizard C, Tardivat C, Viazzi C, Vernoux P (2015) Electrochemically-assisted NOx storage-reduction catalysts. Catal Today 241:143–150. https://doi.org/10.1016/j.cattod.2014.03.076

    Article  CAS  Google Scholar 

  137. Stavrakakis E, West M, Johnston S, McIllwaine R, Poulidi D (2019) Hydration, CO2 stability and wireless electrochemical promotion studies on yttria-doped Ba (Ce, Zr) O3 perovskites. Ionics (Kiel) 25:1243–1257. https://doi.org/10.1007/s11581-019-02836-6

    Article  CAS  Google Scholar 

  138. Poulidi D, Thursfield A, Metcalfe IS (2007) Electrochemical promotion of catalysis controlled by chemical potential difference across a mixed ionic-electronic conducting ceramic membrane – an example of wireless NEMCA. Top Catal 44:435–449. https://doi.org/10.1007/s11244-006-0136-0

    Article  CAS  Google Scholar 

  139. Poulidi D, Metcalfe IS (2008) Comparative studies between classic and wireless electrochemical promotion of a Pt catalyst for ethylene oxidation. J Appl Electrochem 388(38):1121–1126. https://doi.org/10.1007/S10800-008-9525-3

    Article  Google Scholar 

  140. Poulidi D, Metcalfe IS (2010) In situ catalyst activity control in a novel membrane reactor-reaction driven wireless electrochemical promotion of catalysis. Chem Eng Sci 65:446–450. https://doi.org/10.1016/j.ces.2009.06.013

    Article  CAS  Google Scholar 

  141. Poulidi D, Rivas ME, Zydorczak B, Wu Z, Li K, Metcalfe IS (2012) Electrochemical promotion of a Pt catalyst supported on La0.6Sr0.4Co0.2Fe0.8O3 − δ hollow fibre membranes. Solid State Ionics 225:382–385. https://doi.org/10.1016/J.SSI.2012.03.010

    Article  CAS  Google Scholar 

  142. Poulidi D, Anderson C, Metcalfe IS (2008) Remote control of the activity of a Pt catalyst supported on a mixed ionic electronic conducting membrane. Solid State Ionics 179:1347–1350. https://doi.org/10.1016/J.SSI.2008.01.056

    Article  CAS  Google Scholar 

  143. Poulidi D, Mather GC, Metcalfe IS (2007) Wireless electrochemical modification of catalytic activity on a mixed protonic–electronic conductor. Solid State Ionics 178:675–680. https://doi.org/10.1016/J.SSI.2007.02.022

    Article  CAS  Google Scholar 

  144. Fuelcell Store (2022) Yttria-stabilized zirconia (8% Y). Standard Grade Powder

    Google Scholar 

  145. Inframat Advanced Materials (2022) 8 mol% yttria stabilized zirconia (YSZ) Nano Powder, 99.9+%, 30–60 nm

    Google Scholar 

  146. Lelalertsupakul W, Assabumrungrat S, Bumroongsakulsawat P (2020) Electrochemical promotion of propane oxidation at Pt/BiCuVOx-YSZ thin-film cells: economical use of YSZ. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.104141

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Baranova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fellah Jahromi, A., Panaritis, C., Baranova, E.A. (2023). The Quest of Electropromoted Nano-dispersed Catalysts. In: Vernoux, P., Vayenas, C.G. (eds) Recent Advances in Electrochemical Promotion of Catalysis. Modern Aspects of Electrochemistry, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-031-13893-5_3

Download citation

Publish with us

Policies and ethics