Skip to main content

An Efficient Multi-objective Evolutionary Algorithm for a Practical Dynamic Pickup and Delivery Problem

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13393))

Included in the following conference series:

Abstract

Recently, practical dynamic pickup and delivery problem (DPDP) has become a challenging problem in manufacturing enterprises, due to the uncertainties of customers’ requirements and production processes. This paper proposes a multi-objective evolutionary algorithm based on decomposition with four efficient local search strategies, called MOEA/D-ES, which can well solve a practical DPDP with constraints like dock, time windows, capacity and last-in-first-out loading. This method decomposes the problem under consideration into many subproblems. The experimental results on 40 real-world logistics problem instances, offered by Huawei in the competition at ICAPS 2021, validate the high efficiency and effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cordeau, J.-F., Laporte, G., Ropke, S.: Recent Models and Algorithms for One-to-One Pickup and Delivery Problems. pp. 327–357. Springer US https://doi.org/10.1007/978-0-387-77778-8_15

  2. Savelsbergh, M., Sol, M.: Drive: dynamic routing of independent vehicles. Oper. Res. 46(4), 474–490 (1998)

    Article  MATH  Google Scholar 

  3. Gendreau, M., Guertin, F., Potvin, J.-Y., Séguin, R.: Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Trans. Res. Part C: Emerging Technol. 14(3), 157–174 (2006)

    Article  Google Scholar 

  4. Mitrović-Minić, S., Laporte, G.: Waiting strategies for the dynamic pickup and delivery problem with time windows. Trans. Res. Part B: Methodological 38(7), 635–655 (2004)

    Article  Google Scholar 

  5. D. Sáez, C. E. Cortés, A. Núñez, O. Research: Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Comput. Oper. Res. 35(11), 3412–3438 (2008)

    Article  MATH  Google Scholar 

  6. Pureza, V., Laporte, G.: Waiting and buffering strategies for the dynamic pickup and delivery problem with time windows. INFOR: Information Systems Operational Res. 46(3), 165–175 (2008)

    Google Scholar 

  7. Hao, J., Lu, J., Li, X., Tong, X., Xiang, X., Yuan, M., Zhuo, H.H.: Introduction to the dynamic pickup and delivery problem benchmark--ICAPS 2021 competition. arXiv preprint arXiv:2202.01256 (2022)

  8. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  9. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2016)

    Google Scholar 

  10. Xu, Q., Xu, Z., Ma, T.: A survey of multiobjective evolutionary algorithms based on decomposition: variants, challenges and future directions. IEEE Access 8, 41588–41614 (2020)

    Article  Google Scholar 

  11. Zhang, Q., Li, B., Zhang, F.: A MOEA/D approach to exploit the crucial structure of convolution kernels. In: 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 643–648

    Google Scholar 

  12. Jiang, S.-L., Zhang, L.: Energy-oriented scheduling for hybrid flow shop with limited buffers through efficient multi-objective optimization. IEEE Access 7, 34477–34487 (2019)

    Article  Google Scholar 

  13. Xu, Y., Ding, O., Qu, R., Li, K.: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization. Appl. Soft Comput. 68, 268–282 (2018)

    Article  Google Scholar 

  14. Berbeglia, G., Cordeau, J.-F., Laporte, G.: Dynamic pickup and delivery problems. Eur. J. Oper. Res. 202(1), 8–15 (2010)

    Article  MATH  Google Scholar 

  15. Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems: three decades and counting. Networks 67(1), 3–31 (2016)

    Article  MathSciNet  Google Scholar 

  16. Swihart, M.R., Papastavrou, J.D.: A stochastic and dynamic model for the single-vehicle pick-up and delivery problem. Eur. J. Oper. Res. 114(3), 447–464 (1999)

    Article  MATH  Google Scholar 

  17. Mitrović-Minić, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Trans. Res. Part B: Methodological 38(8), 669–685 (2004)

    Article  Google Scholar 

  18. Schilde, M., Doerner, K.F., Hartl, R.F.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Comput. Oper. Res. 38(12), 1719–1730 (2011)

    Article  MATH  Google Scholar 

  19. Schilde, M., Doerner, K.F., Hartl, R.F.: Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem. Eur. J. Oper. Res. 238(1), 18–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fagerholt, K., Foss, B., Horgen, O.: A decision support model for establishing an air taxi service: a case study. J. Operational Res. Soc. 60(9), 1173–1182 (2009)

    Article  MATH  Google Scholar 

  21. Reyes, D., Erera, A., Savelsbergh, M., Sahasrabudhe, S., O’Neil, R.: The meal delivery routing problem. Optimization Online (2018)

    Google Scholar 

  22. Ulmer, M.W., Thomas, B.W., Campbell, A.M., Woyak, N.: The restaurant meal delivery problem: dynamic pickup and delivery with deadlines and random ready times. Transp. Sci. 55(1), 75–100 (2021)

    Article  Google Scholar 

  23. Cassani, L., Righini, G.: Heuristic algorithms for the TSP with rear-loading. In: 35th Annual Conference of the Italian Operational Research Society (AIRO XXXV), Lecce (2004)

    Google Scholar 

  24. Carrabs, F., Cordeau, J.-F., Laporte, G.: Variable neighborhood search for the pickup and delivery traveling salesman problem with LIFO loading. INFORMS J. Comput. 19(4), 618–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. https://competition.huaweicloud.com/information/1000041411/circumstance

  26. https://competition.huaweicloud.com/information/1000041411/Winning

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Ming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, J., Zhu, Q., Lin, Q., Li, J., Chen, J., Ming, Z. (2022). An Efficient Multi-objective Evolutionary Algorithm for a Practical Dynamic Pickup and Delivery Problem. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13393. Springer, Cham. https://doi.org/10.1007/978-3-031-13870-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13870-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13869-0

  • Online ISBN: 978-3-031-13870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics