Skip to main content

Vessel Site Selection for Autonomous Cannulation Under NIR Image Guidance

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Venipuncture is a nearly ubiquitous part of modern clinical practice. However, currently venipuncture procedures are mainly applied by manual operation, whose the success rate might decrease below 50% in some situations, including pediatric, and geriatric patients. Thus, robotic technologies to guide autonomous vascular access attracts research attention. For venipuncture robots, near-infrared (NIR) images are widely used for real-time servoing and further to segment subcutaneous vessels for puncture with a series of deep convolutional neural networks. It has been realized that the success rate of puncture largely relies on the performance of segmentation models. However, the small size and low quality of NIR image dataset severely limit the accuracy and efficiency of segmentation models. This paper aims to address this issue by proposing a novel data processing method to improve the performance of segmentation models. With those novel image processing strategies, the segmentation results are improved. The Dice-mean value has increased by an average of 1.12%. Additionally, an algorithm of vessel site selection for puncture is proposed in this paper. Such data processing methods and the puncture site selection algorithm are expected to finally improve the performance of venipuncture robots.

This work is supported by the National Natural Science Foundation of China (51905379), Shanghai Science and Technology Development Funds (20QC1400900), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100) and the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niska, R., Bhuiya, F., Xu, J.: National hospital ambulatory medical care survey: 2007 emergency department summary. Natl. Health Stat. Rep. 26, 1–31 (2010)

    Google Scholar 

  2. Chen, A.: Image-guided robotics for autonomous venipuncture. Ph.D. dissertation, Department BME, Rutgers University, New Brunswick (2016)

    Google Scholar 

  3. Carr, P., et al.: Development of a clinical prediction rule to improve peripheral intravenous cannulae first attempt success in the emergency department and reduce post insertion failure rates: the Vascular Access Decisions in the Emergency Room (VADER) study protocol. BMJ Open 6(2), e009196 (2016)

    Google Scholar 

  4. Jacobson, A., Winslow, E.: Variables influencing intravenous catheter insertion difficulty and failure: an analysis of 339 intravenous catheter insertions. Heart & Lung 34(5), 345–359 (2005)

    Article  Google Scholar 

  5. Kuensting, L., DeBoer, S., Holleran, R., Shultz, B., Steinmann, R., Venella, J.: Difficult venous access in children: taking control. J. Emerg. Nurs. 35(5), 419–424 (2009)

    Article  Google Scholar 

  6. Kennedy, R., Luhmann, J., Zempsky, W.: Clinical implications of unmanaged needle-insertion pain and distress in children. Pediatrics 122(3), S130–S133 (2008)

    Article  Google Scholar 

  7. Buowari, O.: Complications of venepuncture. Adv. Biosci. Biotechnol. 04(01), 126–128 (2013)

    Article  Google Scholar 

  8. Perry, T.: Profile: veebot [Resources_Start-ups]. IEEE Spectr. 50(8), 23 (2013)

    Article  Google Scholar 

  9. Balter, M., Chen, A., Maguire, T., Yarmush, M.: The system design and evaluation of a 7-DOF image-guided venipuncture robot. IEEE Trans. Rob. 31(4), 1044–1053 (2015)

    Article  Google Scholar 

  10. Li, F., Huang, Z., Xu, L.: Path planning of 6-DOF venipuncture robot arm based on improved a-star and collision detection algorithms. In: Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics, Dali, China, pp. 2971–2976 (2019)

    Google Scholar 

  11. Chen, A., Balter, M., Maguire, T., Yarmush, M.: Deep learning robotic guidance for autonomous vascular access. Nat. Mach. Intell. 2(2), 104–115 (2020)

    Article  Google Scholar 

  12. Chen, Y., et al.: Semi-supervised vein segmentation of ultrasound images for autonomous venipuncture. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, pp. 9475–9481 (2021)

    Google Scholar 

  13. Beć, K.B., Grabska, J., Huck, C.W.: Principles and applications of miniaturized near-infrared (NIR) spectrometers. Chem. Eur. J. 27(5), 1514–1532 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Ji, J., Xie, T., Du, F., Qi, P. (2022). Vessel Site Selection for Autonomous Cannulation Under NIR Image Guidance. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics