Skip to main content

Design and Modeling of a Lightweight Concentric Tube Robot for Nasopharyngeal Surgery

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

The millimeter diameter of the concentric tube robot enables it to pass through the human nasal cavity for surgery. However, plenty of concentric tube robots adopt a bulky design scheme, forcing the limited space in the operating room to be occupied. In this paper, a lightweight concentric tube robot for nasopharyngeal surgery is proposed. The robot can be mounted on a 6-DOF robot. The length of the concentric tube robot can be adjusted in real-time to perform surgery in different positions. Then, the curvature of the tubes is determined by analyzing the coupling between the tubes. The effect of the stiffness on the curvature of the tubes is analyzed. The forward kinematics model considering the coupling of the concentric tube robot is established. The simulation showed that the stiffness ratio between the tubes is contrary to the changing trend of coupling levels. Finally, the inverse kinematics model of the concentric tube robot is established using the LM algorithm. A simulation is proposed to prove the feasibility of this algorithm. This paper has implications for the motion control of the concentric tube robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupont, P., Simaan, N., Choset, H., Rucker, C.: Continuum robots for medical interventions. Proc. IEEE 1–24 (2022)

    Google Scholar 

  2. Liu, D., et al.: Magnetically driven soft continuum microrobot for intravascular operations in microscale. Cyborg Bionic Syst. (2022)

    Google Scholar 

  3. Lei, Y., Li, Y., Song, R., Du, F.: Development of a novel deployable arm for natural orifice transluminal endoscopic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 17(3), e2232 (2021)

    Article  Google Scholar 

  4. D’Ettorre, C., et al.: Accelerating surgical robotics research: a review of 10 years with the da Vinci Research Kit. arXiv preprint (2021)

    Google Scholar 

  5. Angrisani, L., Grazioso, S., Di Gironimo, G., Panariello, D., Tedesco, A.: On the use of soft continuum robots for remote measurement tasks in constrained environments: a brief overview of applications. In: IEEE International Symposium on Measurements & Networking (M&N), Catania, Italy, pp. 1–5. IEEE (2019)

    Google Scholar 

  6. Gifari, M.W., Naghibi, H., Stramigioli, S., Abayazid, M.: A review on recent advances in soft surgical robots for endoscopic applications. Int. J. Med. Robot. Comput. Assist. Surg. 15(5), e2010 (2019)

    Article  Google Scholar 

  7. Schneider, J.S., Burgner, J., Webster, R.J., III., Russell, P.T., III.: Robotic surgery for the sinuses and skull base: What are the possibilities and what are the obstacles? Curr. Opin. Otolaryngol. Head Neck Surg. 21(1), 11–16 (2013)

    Article  Google Scholar 

  8. Li, Z., Du, R., Lei, M.C., Yuan, S.M.: Design and analysis of a biomimetic wire-driven robot arm. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, vol. 7, pp. 191–198. ASME, USA (2011).

    Google Scholar 

  9. Chirikjian, G.S.: Conformational modeling of continuum structures in robotics and structural biology: a review. Adv. Robot. 29(13), 817–829 (2015)

    Article  Google Scholar 

  10. Janabi-Sharifi, F., Jalali, A., Walker, I.D.: Cosserat rod-based dynamic modeling of tendon-driven continuum robots: a tutorial. IEEE Access 9, 68703–68719 (2021)

    Article  Google Scholar 

  11. Fonseca, L.M., Rodrigues, G.V., Savi, M.A.: An overview of the mechanical description of origami-inspired systems and structures. Int. J. Mech. Sci. 233, 107316 (2022)

    Article  Google Scholar 

  12. Zhang, G., et al.: Design and modeling of a bio-inspired compound continuum robot for minimally invasive surgery. Machines 10, 468 (2022)

    Article  Google Scholar 

  13. Webster, R.J., III., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  14. Wang, J., Yang, X., Li, P., Song, S., Liu, L., Meng, M.-H.: Design of a multi-arm concentric-tube robot system for transnasal surgery. Med. Biol. Eng. Comput. 58(3), 497–508 (2020). https://doi.org/10.1007/s11517-019-02093-9

    Article  Google Scholar 

  15. Madoglio, A., et al.: Robotics in endoscopic transnasal skull base surgery: literature review and personal experience. Control Syst. Des. Bio-Robot. Bio-mechatron. Adv. Appl. 221–244 (2020)

    Google Scholar 

  16. Mahoney, A.W., Gilbert, H.B., Webster III, R.J.: A review of concentric tube robots: modeling, control, design, planning, and sensing. The Encyclopedia of MEDICAL ROBOTICS: Volume 1 Minimally Invasive Surgical Robotics, pp. 181–202 (2019)

    Google Scholar 

  17. Bergeles, C., Gosline, A.H., Vasilyev, N.V., Codd, P.J., Nido, P.J., Dupont, P.E.: Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Rob. 31(1), 67–84 (2015)

    Article  Google Scholar 

  18. Swaney, P.J., Gilbert, H.B., Webster, R.J., III., Russell, P.T., III., Weaver, K.D.: Endonasal skull base tumor removal using concentric tube continuum robots: a phantom study. J. Neurol. Surg. Part B: Skull Base 76(02), 145–149 (2015)

    Google Scholar 

  19. Swaney, P.J., et al.: Tendons, concentric tubes, and a bevel tip: three steerable robots in one transoral lung access system. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 5378–5383. IEEE (2015)

    Google Scholar 

  20. Gilbert, H.B., Rucker, D.C., Webster III, R.J.: Concentric tube robots: the state of the art and future directions. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114, pp. 253–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28872-7_15

    Chapter  Google Scholar 

  21. Florea, A.N., Ropella, D.S., Amanov, E., Herrell III, S.D., Webster III, R.J.: Design of a modular, multi-arm concentric tube robot featuring roller gears. In: Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 12034, pp. 37–42 (2022)

    Google Scholar 

  22. Bodani, V., Azimian, H., Looi, T., Drake, J.: Design and evaluation of a concentric tube robot for minimally-invasive endoscopic paediatric neurosurgery. In: The Hamlyn Symposium on Medical Robotics, vol. 1, no. 1, pp. 25–26 (2014)

    Google Scholar 

  23. Rucker, C., Childs, J., Molaei, P., Gilbert, H.B.: Transverse anisotropy stabilizes concentric tube robots. IEEE Robot. Autom. Lett. 7(2), 2407–2414 (2022)

    Article  Google Scholar 

  24. Girerd, C., Schlinquer, T., Andreff, N., Renaud, P., Rabenorosoa, K.: Designof concentric tube robots using tube patterning for follow-the-leader deployment. J. Mech. Robot. 13(1) (2021)

    Google Scholar 

  25. Sugihara, T.: Solvability-unconcerned inverse kinematics by the Levenberg–Marquardt method. IEEE Trans. Rob. 27(5), 984–991 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation funded project (Grant No. 2019M662346), Shandong Provincial Postdoctoral Innovative Talents Funded Scheme (Grant No. 238226), the Focus on Research and Development Plan in Shandong province (Grant No. 2022CXGC010503), the Intelligent Robots and Systems High-precision Innovation Center Open Fund (Grant No. 2019IRS06), the Fundamental Research Funds for the Central Universities and Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxin Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, G., Wei, H., Qi, P., Wang, H., Cheng, H., Du, F. (2022). Design and Modeling of a Lightweight Concentric Tube Robot for Nasopharyngeal Surgery. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics