Skip to main content

Design of Enveloping Underwater Soft Gripper Based on the Bionic Structure

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13457))

Included in the following conference series:

  • 2809 Accesses

Abstract

The ocean has been an important research site for scientists in recent years. Many marine creatures with soft bodies such as sea cucumbers are fragile and easily deformed, so it is difficult when grasping these kinds of targets. In this regard, this study developed an underwater soft robot gripper based on a bionic structure. By imitating the envelope structure of the Venus flytrap, the soft robot gripper was designed with a soft finger envelope plate, and the structure was designed by imitating human finger fingerprints. The large and small pressure chambers of soft fingers were designed with the characteristics of different lengths of the segments. By adopting these bionic elements, the grasping ability of the gripper has been greatly improved. The structural parameter optimization design of soft fingers, based on finite element simulation, has been described detailed in the paper. The declination between the simulation results and the actual results is very small, which proves that the accuracy of the optimization method is high. In the simulated underwater environment, some models and living sea cucumbers were grasped for tests. Finally, the experimental results proved that the soft robot gripper can achieve the goal of stable grasping for different objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teoh, Z.E., Phillips, B.T., Becker, K.P., et al.: Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms. Sci. Robot. 3(20) (2018). https://doi.org/10.1126/scirobotics.aat5276

  2. Xie, Z.X., Domel, A.G., An, N., et al.: Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robot. 7(5), 639–648 (2020)

    Article  Google Scholar 

  3. Vogt, D.M., Becker, K.P., Phillips, B.T., et al.: Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms. PLoS One 13(8) (2018). https://doi.org/10.1371/journal.pone.0200386

  4. Phillips, B.T., Becker, K.P., Kurumaya, S., et al.: A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-33138-y

  5. Aguzzi, J., Costa, C., Calisti, M., et al.: Research trends and future perspectives in marine biomimicking robotics. Sensors 21(11) (2021). https://doi.org/10.3390/s21113778

  6. Chen, Y.Z., Zhang, Q.F., Tian, Q.Y., et al.: Research status of underwater multi-fingered hands. Robot 42(6), 749–768 (2020)

    Google Scholar 

  7. Marvi, H., Gong, C.H., Gravish, N., et al.: Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346(6206), 224–229 (2014)

    Article  Google Scholar 

  8. Zhang, Z., Ni, X.Q., Gao, W.L., et al.: Pneumatically controlled reconfigurable bistable bionic flower for robotic gripper. Soft Robot. (2021). https://doi.org/10.1089/soro.2020.0200

  9. Galloway, K.C., Becker, K.P., Phillips, B., et al.: Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3(1), 23–33 (2016)

    Article  Google Scholar 

  10. Mosadegh, B., Polygerinos, P., Keplinger, C., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)

    Article  Google Scholar 

  11. Kurumaya, S., Phillips, B.T., Becker, K.P., et al.: A modular soft robotic wrist for underwater manipulation. Soft Robot. 5(4), 399–409 (2018)

    Article  Google Scholar 

  12. Luo, S.J., Wang, S., Cheng, G.G., et al.: Designing, manufacturing and controlling of the elastic materials based bionic hand. J. Mech. Eng. 55(11), 69–75 (2019)

    Article  Google Scholar 

  13. Terryn, S., Brancart, J., Lefeber, D., et al.: Self-healing soft pneumatic robots. Sci. Robot. 2(9) (2017). https://doi.org/10.1126/scirobotics.aan4268

  14. Nasab, A.M., Sabzehzar, A., Tatari, M., et al.: A soft gripper with rigidity tunable elastomer strips as ligaments. Soft Robot. 4(4), 411–420 (2017)

    Article  Google Scholar 

  15. Feng, N., Shi, Q., Wang, H., et al.: A soft robotic hand: design, analysis, sEMG, control, and experiment. Int. J. Adv. Manuf. Technol. 97(1–4), 319–333 (2018). https://doi.org/10.1007/s00170-018-1949-2

    Article  Google Scholar 

  16. Sinatra, N.R., Teeple, C.B., Vogt, D.M., et al.: Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 4(33) (2019). https://doi.org/10.1126/scirobotics.aax5425

  17. Dong, H., Wang, B.X., Li, W., et al.: The deformation mechanism of soft hand based on one-way pneumatic actuator. J. Donghua Univ. 46(2), 288–296 (2020)

    Google Scholar 

  18. Liu, W.H., Hu, J., Wang, W.M.: Soft gripper grasping based on complete grasp configuration and multi-stage network. J. Shanghai Jiaotong Univ. 54(5), 507–514 (2020). https://doi.org/10.16183/j.cnki.jsjtu.2020.05.008

    Article  Google Scholar 

  19. Wu, Z.P., Li, X.N.: Grasping strategy of a soft gripper with endoskeleton structure. Chin. Hydraul. Pneumatics 45(4), 61–68 (2021)

    Google Scholar 

  20. Subramaniam, V., Jain, S., Agarwal, J., et al.: Design and characterization of a hybrid soft gripper with active palm pose control. Int. J. Robot. Res. 39(14), 1668–1685 (2020)

    Article  Google Scholar 

  21. Huang, J.L., Xie, G.J., Liu, Z.W.: FEA of hyperelastic rubber material based on Mooney-Rivlin model and Yeoh model. China Rubber Ind. 55(8), 467–471 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dou, J., Zhang, D., Sun, Y., Fu, X., Zhao, X. (2022). Design of Enveloping Underwater Soft Gripper Based on the Bionic Structure. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13457. Springer, Cham. https://doi.org/10.1007/978-3-031-13835-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13835-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13834-8

  • Online ISBN: 978-3-031-13835-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics