Skip to main content

Comprehensive Evaluation of BERT Model for DNA-Language for Prediction of DNA Sequence Binding Specificities in Fine-Tuning Phase

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13394))

Included in the following conference series:

  • 1850 Accesses

Abstract

Deciphering the language of DNA has always been one of the difficult problems that informatics methods need to deal with. In order to meet this challenge, many deep learning models have been proposed. Among them, DNA-language models based on pre-trained Bidirectional Encoder Representations from Transformers (BERT) is one of the methods with excellent performance in recognition accuracy. At the same time, most studies focus on the design of the model structure, while for pre-trained DNA-language models such as BERT, there are relatively few studies on the influence of the fine-tuning stage on model performance. To this end, we select DNABERT, the first pre-trained BERT model for DNA-language, to analysis its fine-tuning performances with different parameters settings in motif mining tasks, which are one of the most classic missions for prediction of DNA sequence binding specificities. Furthermore, we compare the fine-tuning results to the performances of previously existing models by dividing different types of datasets. The results show that in fine-tuning phase, different hyper-parameters combinations and types of dataset do have significant impact on model performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D'haeseleer, P.: What are DNA sequence motifs? Nat. Biotechnol. 24, 423–425 (2006)

    Google Scholar 

  2. Nirenberg, M., Leder, P.: RNA codewords and protein synthesis, VII. On the general nature of the RNA code. Proc. Natl. Acad. Sci. USA 53, 1161–1168 (1965)

    Google Scholar 

  3. Galas, D.J., Schmitz, A.: DNAase footprinting a simple method for the detection of protein-DNA binding specificity. Nucleic. Acids Res. 5(9), 3157–3170 (1978)

    Article  Google Scholar 

  4. Hellman, L., Fried, M.: Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007)

    Article  Google Scholar 

  5. Schenborn, E., Groskreutz, D.: Reporter gene vectors and assays. Mol. Biotechnol. 13, 29–44 (1999)

    Article  Google Scholar 

  6. Trabelsi, A., Chaabane, M., Ben-Hur, A.: Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics 35(14), i269–i277 (2019)

    Article  Google Scholar 

  7. LeCun, Y.: Gradient-based learning applied to document recognition. Proc. IEEE. 86, 2278–2324 (1998)

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  9. Alipanahi, B., Delong, A., Weirauch, M.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)

    Article  Google Scholar 

  10. Zhu, L., Zhang, H.B., Huang, D.S.: Direct AUC optimization of regulatory motifs. Bioinformatics 33(14), i243–i251 (2017)

    Article  Google Scholar 

  11. Shen, Z., Zhang, Y.H., Han, K.S., Nandi, A.K., Honig, B., Huang, D.S.: miRNA-disease association prediction with collaborative matrix factorization. Complexity. 2017(2017), 1–9 (2017)

    Google Scholar 

  12. Gupta, A., Rush, A.M.: Dilated convolutions for modeling long-distance genomic dependencies. arXiv:1710.01278 (2017)

  13. Davuluri, R.V.: The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 24, 167–177 (2008)

    Google Scholar 

  14. Gibcus, J.H., Dekker, J.: The context of gene expression regulation. F1000 Biol. Rep. 4, 8 (2012)

    Google Scholar 

  15. Vitting-Seerup, K., Sandelin, A.: The landscape of isoform switches in human cancers. Mol. Cancer Res. 15, 1206–1220 (2017)

    Article  Google Scholar 

  16. Zhang, H.B., Zhu, L., Huang, D.S.: WSMD: weakly-supervised motif discovery in transcription factor ChIP-seq data. Sci. Rep. 7 (2017)

    Google Scholar 

  17. Quang, D., Xie, X.: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016)

    Article  Google Scholar 

  18. Zhou, Y.X., Hefenbrock, M., Huang, Y.R., Riedel, T., Beigl, M.: Automatic Remaining Useful Life Estimation Framework with Embedded Convolutional LSTM as the Backbone. ECML PKDD 2020: Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track, pp. 461–477 (2020)

    Google Scholar 

  19. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017) (2017)

    Google Scholar 

  21. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of Deep Bidirectional Transformers for Language Understanding (2018)

    Google Scholar 

  22. Taylor, W.L.: Cloze procedure: a new tool for measuring readability. J. Bull. 30(4), 415–433 (1953)

    Google Scholar 

  23. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.: Glue: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 2018a, pp. 353–355 (2018)

    Google Scholar 

  24. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392(2016)

    Google Scholar 

  25. Zhu, L., Zhang, H.B., Huang, D.S.: LMMO: a large margin approach for optimizing regulatory motifs. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 913–925 (2018)

    Article  Google Scholar 

  26. Ji, Y.R., Zhou, Z.H., Liu, H., Davuluri, R.V.: DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics 37(15), 2112–2120 (2021)

    Article  Google Scholar 

  27. Dreos, R., Ambrosini, G., Périer, R.C., Bucher, P.: EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era. Nucleic Acids Res. 41(D1), D157–D164 (2013)

    Article  Google Scholar 

  28. Oubounyt, M., Louadi, Z., Tayara, H., Chong, K.T.: DeePromoter: robust promoter predictor using deep learning. Front Genet. 10, 286 (2019)

    Article  Google Scholar 

  29. Zhang, H.B., Zhu, L., Huang, D.S.: DiscMLA: An efficient discriminative motif learning algorithm over high-throughput datasets. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(6), 1810–1820 (2018)

    Article  Google Scholar 

  30. Solovyev, V., Kosarev, P., Seledsov, I.: Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7(S10) (2006)

    Google Scholar 

  31. Davuluri, R.V.: Application of FirstEF to find promoters and first exons in the human genome. Current Protocols Bioinform. 1, 4.7.1–4.7.10 (2003)

    Google Scholar 

  32. The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)

    Google Scholar 

  33. Zhang, Y., Qiao, S., Ji, S., Li, Y.: DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding. Int. J. Mach. Learn. Cybern. 11(4), 841–851 (2019). https://doi.org/10.1007/s13042-019-00990-x

    Article  Google Scholar 

  34. Khamis, A.M., et al.: A novel method for improved accuracy of transcription factor binding site prediction. Nucleic Acids Res. 46(12), e72 (2018)

    Google Scholar 

  35. Shen, Z., Zhang, Q., Han, K., Huang, D.S.: A deep learning model for RNA-protein binding preference prediction based on hierarchical LSTM and attention network. IEEE/ACM Trans. Comput. Biol. Bioinform. 19 (2020)

    Google Scholar 

  36. Zhang, Q., Shen, Z., Huang, D.S.: Predicting in-vitro transcription factor binding sites using DNA sequence shape. IEEE/ACM Trans. Comput. Biol. Bioinform. 18 (2019)

    Google Scholar 

  37. Shen, Z., Deng, S.P., Huang, D.S.: Capsule network for predicting RNA-Protein binding preferences using hybrid feature. IEEE/ACM Trans. Comput. Biol. Bioinform. 17 (2019)

    Google Scholar 

  38. Zhu, L., Bao, W.Z., Huang, D.S.: Learning TF binding motifs by optimizing fisher exact test score. IEEE/ACM Trans. Comput. Biol. Bioinform. (2016)

    Google Scholar 

  39. Shen, Z., Deng, S.P., Huang, D.S.: RNA-Protein binding sites prediction via multi-scale convolutional gated recurrent unit networks. IEEE Trans. Comput. Biol. Bioinform. 17 (2019)

    Google Scholar 

  40. Zhang, Q.H., Zhu, L., Bao, W.Z., Huang, D.S.: Weakly-supervised convolutional neural network architecture for predicting protein-DNA binding. IEEE/ACM Trans. Comput. Biol. Bioinform. 17 (2020)

    Google Scholar 

  41. Zhang, Q.H., Zhu, L., Huang, D.S.: High-order convolutional neural network architecture for predicting DNA-protein binding sites. IEEE/ACM Trans. Comput. Biol. Bioinform. 16 (2019)

    Google Scholar 

  42. Zhang, Q.H., Shen, Z., Huang, D.S.: Modeling in-vivo protein-DNA binding by combining multiple-instance learning with a hybrid deep neural network. Sci. Rep. 9, 8484 (2019)

    Article  Google Scholar 

  43. Xu, W.X., Zhu, L., Huang, D.S.: DCDE: an efficient deep convolutional divergence encoding method for human promoter recognition. IEEE Trans. Nanobiosci. 18(2), 136–145 (2019)

    Article  Google Scholar 

  44. Shen, Z., Bao, W.Z., Huang, D.S.: Recurrent neural network for predicting transcription factor binding sites. Sci. Rep. 8, 15270 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of National Key R&D Program of China (No. 2018YFA0902600 & 2018AAA0100100) and partly supported by National Natural Science Foundation of China (Grant nos. 61732012, 62002266, 61932008, and 62073231), and Introduction Plan of High-end Foreign Experts (Grant no. G2021033002L) and, respectively, supported by the Key Project of Science and Technology of Guangxi (Grant no. 2021AB20147), Guangxi Natural Science Foundation (Grant nos. 2021JJA170204 & 2021JJA170199) and Guangxi Science and Technology Base and Talents Special Project (Grant nos. 2021AC19354 & 2021AC19394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbao Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, X., Yuan, C., Wu, H., Zhao, X. (2022). Comprehensive Evaluation of BERT Model for DNA-Language for Prediction of DNA Sequence Binding Specificities in Fine-Tuning Phase. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13394. Springer, Cham. https://doi.org/10.1007/978-3-031-13829-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13829-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13828-7

  • Online ISBN: 978-3-031-13829-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics