Abstract
High precision manufacturing is playing a fundamental role in Photonics to enable innovation in several disciplines ranging from optical communications to imaging, healthcare and security. Printing has a potential huge impact on the manufacturing of photonic crystals (PCs). The concept of PCs and photonic band gap materials has opened a new era allowing the realization of advanced nanomaterials for photonics. This chapter mainly describes the impact of High-Resolution Manufacturing techniques on the conception of new bulk materials and on their application as dielectric laser-driven accelerators. The light flow control enabled by PCs represents a unique possibility to reach high energies in compact accelerator structures. Examples of PC structures, having different geometries and accelerating properties, are discussed, illustrating their fabrication process. Recent developments of high-resolution printing of complex photonic devices for other applications are also mentioned.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (2011)
R.J. England, R.J. Noble, K. Bane, D.H. Dowell, C.-K. Ng, J.E. Spencer, S. Tantawi, Z. Wu, R.L. Byer, E. Peralta, K. Soong, C.-M. Chang, B.Montazeri, S.J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R.B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G.R. Werner, R.B. Yoder, Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014). https://link.aps.org/doi/10.1103/RevModPhys.86.1337
B.M. Cowan, Three-dimensional dielectric photonic crystal structures for laser-driven acceleration. ***Phys. Rev. Special Topics-Accel. Beams 11(1), 011301 (2008)
R.H. Siemann, Energy efficiency of laser driven, structure based accelerators. Phys. Rev. ST Accel. Beams 7, 061303 (2004). https://link.aps.org/doi/10.1103/PhysRevSTAB.7.061303
X.E. Lin, Photonic band gap fiber accelerator. Phys. Rev. ST Accel. Beams 4, 051301 (2001). https://link.aps.org/doi/10.1103/PhysRevSTAB.4.051301
G. Torrisi, L. Celona, C. De Angelis, S. Gammino, A. Locatelli, D. Mascali, G. Mauro, G. Sorbello, Numerical study of photonic-crystal-based dielectric accelerators, in 10th Int. Particle Acc. Conf.(IPAC’19), Melbourne, Australia, 19–24 May 2019 (JACOW Publishing, Geneva, 2019), pp. 3653–3656
S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zurzycki, S.R. Kurtz, J. Bur, A three-dimensional photonic crystal operating at infrared wavelength. Nature 394, 251–253 (1998)
I. Staude, C. McGuinness, A. Frölich, R.L. Byer, E. Colby, M. Wegener, Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures. Opt. Express 20(5), 5607–5612 (2012). http://www.osapublishing.org/oe/abstract.cfm?URI=oe-20-5-5607
S.G. Johnson, J.D. Joannopoulos, Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Appl. Phys. Lett. 77(22), 3490–3492 (2000). https://doi.org/10.1063/1.1328369
S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289(5479), 604–606 (2000). https://www.science.org/doi/abs/10.1126/science.289.5479.604
K. Aoki, H.T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, Y. Aoyagi, Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation. Appl. Phys. Lett. 81(17), 3122–3124 (2002). https://doi.org/10.1063/1.1515117
B. Cumpston, S. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)
I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, M. Wegener, Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett. 35(7), 1094–1096 (2010). http://www.osapublishing.org/ol/abstract.cfm?URI=ol-35-7-1094
C. Lee, Z. Wu, Y. Xuan, R.J. England, M. Qi, Novel fabrication of 3d woodpile accelerator by silicon membrane stacking. AIP Conf. Proc. 1777(1), 060005 (2016). https://aip.scitation.org/doi/abs/10.1063/1.4965634
S.G. Johnson, Fabrication of three-dimensional crystals: those clever experimentalists, in From Lecture Series Photonic Crystals: Periodic Surprises in Electromagnetism. http://ab-initio.mit.edu/photons/tutorial/
N.V. Sapra, K.Y. Yang, D. Vercruysse, K.J. Leedle, D.S. Black, R.J. England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R.L. Byer, J. Vukovic, On-chip integrated laser-driven particle accelerator. Science 367(6473), 79–83 (2020)
M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukouli, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature 3, 444–447 (2004)
N. Tétreault, G.G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, G.A. Ozin, New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates. Adv. Mater. 18(4), 457–460 (2006). https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200501674
C. McGuinness, E. Colby, R. Byer, Accelerating electrons with lasers and photonic crystals. J. Mod. Opt. 56(18–19), 2142–2147 (2009). https://doi.org/10.1080/09500340903318539
M.C. Wanke, O. Lehmann, K. Müller, Q. Wen, M. Stuke, Laser rapid prototyping of photonic band-gap microstructures. Science 275(5304), 1284–1286 (1997). http://www.jstor.org/stable/2892386
B. Naranjo, A. Valloni, S. Putterman, J. Rosenzweig, Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics. Phys. Rev. Lett. 109(16), 164803 (2012)
A. Locatelli, G. Sorbello, G. Torrisi, L. Celona, C. De Angelis, Photonic crystal waveguides for particle acceleration, in 2017 Prog, Electromagnetic. Res. Symposium-Spring (PIERS) (IEEE, Piscataway, 2017), pp. 1008–1013
G.S. Mauro et al., Fabrication and characterization of woodpile waveguides for microwave injection in ion sources. IEEE Trans. Microw. Theory Techn. 68(5), 1621–1626 (2020)
G.S. Mauro, A. Locatelli, G. Torrisi, L. Celona, C. De Angelis, G. Sorbello, Woodpile EBG waveguide as a DC electrical break for microwave ion sources. Microwave Opt. Technol. Lett. 61(3), 610–614 (2019)
G. Torrisi et al., Design and characterization of a silicon w-band woodpile photonic crystal waveguide. IEEE Microw. Wirel. Compon. Lett. 30(4), 347–350 (2020)
G.S. Mauro et al., Numerical simulation and beam-dynamics study of a hollow-core woodpile coupler for dielectric laser accelerators, in Proc. 12th Int. Particle Accelerator Conf. (IPAC’21). (JACoW Publishing, 2021), pp. 2022–2025. Paper TUPAB246. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB246. https://jacow.org/ipac2021/papers/TUPAB246.pdf
G. Torrisi, G.S. Mauro, G. Sorbello, G. Castorina, L. Celona, L. Faillace, B. Spataro, and V. Dolgashev, RF design and experimental test of a quadrupole-free x-band TM01 mode launcher. URSI Radio Sci. Bull. 2020(373), 22–27 (2020)
S.G. Johnson, MIT Photonics-Bands (MPB). http://ab-initio.mit.edu/photons/tutorial/
Y.-S. Cho, D.-I. Kim, H.-S. Kim, K.-T. Seol, H.-J. Kwon, Multi-layered waveguide DC electrical break for the PEFP microwave proton source. J. Korean Phys. Soc. 63(11), 2085–2088 (2013). https://doi.org/10.3938/jkps.63.2085
T. Taylor, J.F. Mouris, An advanced high-current low-emittance DC microwave proton source. Nucl. Instrum. Methods Phys. Res. 336(1–2), 1–5 (1993)
O. Leonardi, G. Torrisi, L.D. Donato, A. Locatelli, L. Celona, C.D. Angelis, G. Sorbello, Hollow-core electromagnetic band gap waveguide as DC-break for ion sources, in 2017 Progress in Electromagnetics Research Symposium—Spring (PIERS) (2017), pp. 1014–1017
G.S. Mauro, A. Locatelli, G. Torrisi, A. Rovelli, L. Celona, C. De Angelis, G. Sorbello, S. Gammino, Hollow core dielectric EBG waveguide to feed microwave ion sources, in 2019 13th European Conference on Antennas and Propagation (EuCAP) (2019), pp. 1–5
W.Q. Zhang, H. Ebendorff-Heidepriem, T.M. Monro, V. Shahraam Afshar, Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Opt. Express 19(22), 21135–21144 (2011). http://www.osapublishing.org/oe/abstract.cfm?URI=oe-19-22-21135
F. Giovanardi, A. Cucinotta, A. Rozzi, R. Corradini, F. Benabid, L. Rosa, L. Vincetti, Hollow core inhibited coupling fibers for biological optical sensing. J. Lightwave Technol. 37(11), 2598–2604 (2019)
C.P. Reardon, I.H. Rey, K. Welna, L. O’Faolain, T.F. Krauss, Fabrication and characterization of photonic crystal slow light waveguides and cavities. JoVE 69, e50216
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, H. Giessen, Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement. ACS Photon. 2(6), 779–786 (2015). https://doi.org/10.1021/acsphotonics.5b00141
M.R. Hasan, O.G. Hellesø, Dielectric optical nanoantennas. Nanotechnology 32(20), 202001 (2021). https://doi.org/10.1088/1361-6528/abdceb
D.G. Baranov, D.A. Zuev, S.I. Lepeshov, O.V. Kotov, A.E. Krasnok, A.B. Evlyukhin, B.N. Chichkov, All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4(7), 814–825 (2017). http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-7-814
Z. Vardeny, A. Nahata, A. Agrawal, Optics of photonic quasicrystals. Nat. Photon. 7, 177–187 (2013)
W. Man, M. Megens, P.J. Steinhardt, P.M. Chaikin, Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436(7053), 993–996 (2005)
L. Petti, M. Rippa, R. Capasso, M. Zanella, L. Manna, P. Mormile, CDSE/CDS nanorods-polymer nanocomposites patternable by e-beam lithography: a novel active 2d photonic quasicrystal simulated, designed, fabricated and characterized. AIP Conf. Proc. 1459(1), 154–156 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
DeAngelis, C., Locatelli, A., Mauro, G.S., Rizzoli, R., Sorbello, G., Torrisi, G. (2022). Photonic Applications: Impact on “Dielectric Laser Acceleration” and Other Case Studies. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-13779-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13778-5
Online ISBN: 978-3-031-13779-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)