Skip to main content

Photonic Applications: Impact on “Dielectric Laser Acceleration” and Other Case Studies

  • Chapter
  • First Online:
High Resolution Manufacturing from 2D to 3D/4D Printing

Abstract

High precision manufacturing is playing a fundamental role in Photonics to enable innovation in several disciplines ranging from optical communications to imaging, healthcare and security. Printing has a potential huge impact on the manufacturing of photonic crystals (PCs). The concept of PCs and photonic band gap materials has opened a new era allowing the realization of advanced nanomaterials for photonics. This chapter mainly describes the impact of High-Resolution Manufacturing techniques on the conception of new bulk materials and on their application as dielectric laser-driven accelerators. The light flow control enabled by PCs represents a unique possibility to reach high energies in compact accelerator structures. Examples of PC structures, having different geometries and accelerating properties, are discussed, illustrating their fabrication process. Recent developments of high-resolution printing of complex photonic devices for other applications are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (2011)

    Google Scholar 

  2. R.J. England, R.J. Noble, K. Bane, D.H. Dowell, C.-K. Ng, J.E. Spencer, S. Tantawi, Z. Wu, R.L. Byer, E. Peralta, K. Soong, C.-M. Chang, B.Montazeri, S.J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R.B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G.R. Werner, R.B. Yoder, Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014). https://link.aps.org/doi/10.1103/RevModPhys.86.1337

    Article  CAS  Google Scholar 

  3. B.M. Cowan, Three-dimensional dielectric photonic crystal structures for laser-driven acceleration. ***Phys. Rev. Special Topics-Accel. Beams 11(1), 011301 (2008)

    Google Scholar 

  4. R.H. Siemann, Energy efficiency of laser driven, structure based accelerators. Phys. Rev. ST Accel. Beams 7, 061303 (2004). https://link.aps.org/doi/10.1103/PhysRevSTAB.7.061303

    Article  Google Scholar 

  5. X.E. Lin, Photonic band gap fiber accelerator. Phys. Rev. ST Accel. Beams 4, 051301 (2001). https://link.aps.org/doi/10.1103/PhysRevSTAB.4.051301

    Article  Google Scholar 

  6. G. Torrisi, L. Celona, C. De Angelis, S. Gammino, A. Locatelli, D. Mascali, G. Mauro, G. Sorbello, Numerical study of photonic-crystal-based dielectric accelerators, in 10th Int. Particle Acc. Conf.(IPAC’19), Melbourne, Australia, 19–24 May 2019 (JACOW Publishing, Geneva, 2019), pp. 3653–3656

    Google Scholar 

  7. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zurzycki, S.R. Kurtz, J. Bur, A three-dimensional photonic crystal operating at infrared wavelength. Nature 394, 251–253 (1998)

    Article  CAS  Google Scholar 

  8. I. Staude, C. McGuinness, A. Frölich, R.L. Byer, E. Colby, M. Wegener, Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures. Opt. Express 20(5), 5607–5612 (2012). http://www.osapublishing.org/oe/abstract.cfm?URI=oe-20-5-5607

    Article  CAS  Google Scholar 

  9. S.G. Johnson, J.D. Joannopoulos, Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Appl. Phys. Lett. 77(22), 3490–3492 (2000). https://doi.org/10.1063/1.1328369

    Article  CAS  Google Scholar 

  10. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289(5479), 604–606 (2000). https://www.science.org/doi/abs/10.1126/science.289.5479.604

    Article  CAS  Google Scholar 

  11. K. Aoki, H.T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, Y. Aoyagi, Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation. Appl. Phys. Lett. 81(17), 3122–3124 (2002). https://doi.org/10.1063/1.1515117

    Article  CAS  Google Scholar 

  12. B. Cumpston, S. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)

    Article  CAS  Google Scholar 

  13. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, M. Wegener, Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt. Lett. 35(7), 1094–1096 (2010). http://www.osapublishing.org/ol/abstract.cfm?URI=ol-35-7-1094

    Article  CAS  Google Scholar 

  14. C. Lee, Z. Wu, Y. Xuan, R.J. England, M. Qi, Novel fabrication of 3d woodpile accelerator by silicon membrane stacking. AIP Conf. Proc. 1777(1), 060005 (2016). https://aip.scitation.org/doi/abs/10.1063/1.4965634

  15. S.G. Johnson, Fabrication of three-dimensional crystals: those clever experimentalists, in From Lecture Series Photonic Crystals: Periodic Surprises in Electromagnetism. http://ab-initio.mit.edu/photons/tutorial/

  16. N.V. Sapra, K.Y. Yang, D. Vercruysse, K.J. Leedle, D.S. Black, R.J. England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R.L. Byer, J. Vukovic, On-chip integrated laser-driven particle accelerator. Science 367(6473), 79–83 (2020)

    Article  CAS  Google Scholar 

  17. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukouli, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature 3, 444–447 (2004)

    Article  CAS  Google Scholar 

  18. N. Tétreault, G.G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, G.A. Ozin, New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates. Adv. Mater. 18(4), 457–460 (2006). https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200501674

    Article  Google Scholar 

  19. C. McGuinness, E. Colby, R. Byer, Accelerating electrons with lasers and photonic crystals. J. Mod. Opt. 56(18–19), 2142–2147 (2009). https://doi.org/10.1080/09500340903318539

    Article  CAS  Google Scholar 

  20. M.C. Wanke, O. Lehmann, K. Müller, Q. Wen, M. Stuke, Laser rapid prototyping of photonic band-gap microstructures. Science 275(5304), 1284–1286 (1997). http://www.jstor.org/stable/2892386

    Article  CAS  Google Scholar 

  21. B. Naranjo, A. Valloni, S. Putterman, J. Rosenzweig, Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics. Phys. Rev. Lett. 109(16), 164803 (2012)

    Google Scholar 

  22. A. Locatelli, G. Sorbello, G. Torrisi, L. Celona, C. De Angelis, Photonic crystal waveguides for particle acceleration, in 2017 Prog, Electromagnetic. Res. Symposium-Spring (PIERS) (IEEE, Piscataway, 2017), pp. 1008–1013

    Google Scholar 

  23. G.S. Mauro et al., Fabrication and characterization of woodpile waveguides for microwave injection in ion sources. IEEE Trans. Microw. Theory Techn. 68(5), 1621–1626 (2020)

    Article  Google Scholar 

  24. G.S. Mauro, A. Locatelli, G. Torrisi, L. Celona, C. De Angelis, G. Sorbello, Woodpile EBG waveguide as a DC electrical break for microwave ion sources. Microwave Opt. Technol. Lett. 61(3), 610–614 (2019)

    Article  Google Scholar 

  25. G. Torrisi et al., Design and characterization of a silicon w-band woodpile photonic crystal waveguide. IEEE Microw. Wirel. Compon. Lett. 30(4), 347–350 (2020)

    Article  Google Scholar 

  26. G.S. Mauro et al., Numerical simulation and beam-dynamics study of a hollow-core woodpile coupler for dielectric laser accelerators, in Proc. 12th Int. Particle Accelerator Conf. (IPAC’21). (JACoW Publishing, 2021), pp. 2022–2025. Paper TUPAB246. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB246. https://jacow.org/ipac2021/papers/TUPAB246.pdf

  27. G. Torrisi, G.S. Mauro, G. Sorbello, G. Castorina, L. Celona, L. Faillace, B. Spataro, and V. Dolgashev, RF design and experimental test of a quadrupole-free x-band TM01 mode launcher. URSI Radio Sci. Bull. 2020(373), 22–27 (2020)

    Article  Google Scholar 

  28. S.G. Johnson, MIT Photonics-Bands (MPB). http://ab-initio.mit.edu/photons/tutorial/

  29. Y.-S. Cho, D.-I. Kim, H.-S. Kim, K.-T. Seol, H.-J. Kwon, Multi-layered waveguide DC electrical break for the PEFP microwave proton source. J. Korean Phys. Soc. 63(11), 2085–2088 (2013). https://doi.org/10.3938/jkps.63.2085

    Article  Google Scholar 

  30. T. Taylor, J.F. Mouris, An advanced high-current low-emittance DC microwave proton source. Nucl. Instrum. Methods Phys. Res. 336(1–2), 1–5 (1993)

    Article  CAS  Google Scholar 

  31. O. Leonardi, G. Torrisi, L.D. Donato, A. Locatelli, L. Celona, C.D. Angelis, G. Sorbello, Hollow-core electromagnetic band gap waveguide as DC-break for ion sources, in 2017 Progress in Electromagnetics Research Symposium—Spring (PIERS) (2017), pp. 1014–1017

    Google Scholar 

  32. G.S. Mauro, A. Locatelli, G. Torrisi, A. Rovelli, L. Celona, C. De Angelis, G. Sorbello, S. Gammino, Hollow core dielectric EBG waveguide to feed microwave ion sources, in 2019 13th European Conference on Antennas and Propagation (EuCAP) (2019), pp. 1–5

    Google Scholar 

  33. W.Q. Zhang, H. Ebendorff-Heidepriem, T.M. Monro, V. Shahraam Afshar, Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Opt. Express 19(22), 21135–21144 (2011). http://www.osapublishing.org/oe/abstract.cfm?URI=oe-19-22-21135

    Article  CAS  Google Scholar 

  34. F. Giovanardi, A. Cucinotta, A. Rozzi, R. Corradini, F. Benabid, L. Rosa, L. Vincetti, Hollow core inhibited coupling fibers for biological optical sensing. J. Lightwave Technol. 37(11), 2598–2604 (2019)

    Article  CAS  Google Scholar 

  35. C.P. Reardon, I.H. Rey, K. Welna, L. O’Faolain, T.F. Krauss, Fabrication and characterization of photonic crystal slow light waveguides and cavities. JoVE 69, e50216

    Google Scholar 

  36. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, H. Giessen, Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on SEIRA enhancement. ACS Photon. 2(6), 779–786 (2015). https://doi.org/10.1021/acsphotonics.5b00141

    Article  CAS  Google Scholar 

  37. M.R. Hasan, O.G. Hellesø, Dielectric optical nanoantennas. Nanotechnology 32(20), 202001 (2021). https://doi.org/10.1088/1361-6528/abdceb

  38. D.G. Baranov, D.A. Zuev, S.I. Lepeshov, O.V. Kotov, A.E. Krasnok, A.B. Evlyukhin, B.N. Chichkov, All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4(7), 814–825 (2017). http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-7-814

    Article  CAS  Google Scholar 

  39. Z. Vardeny, A. Nahata, A. Agrawal, Optics of photonic quasicrystals. Nat. Photon. 7, 177–187 (2013)

    Article  CAS  Google Scholar 

  40. W. Man, M. Megens, P.J. Steinhardt, P.M. Chaikin, Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436(7053), 993–996 (2005)

    Article  CAS  Google Scholar 

  41. L. Petti, M. Rippa, R. Capasso, M. Zanella, L. Manna, P. Mormile, CDSE/CDS nanorods-polymer nanocomposites patternable by e-beam lithography: a novel active 2d photonic quasicrystal simulated, designed, fabricated and characterized. AIP Conf. Proc. 1459(1), 154–156 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Torrisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

DeAngelis, C., Locatelli, A., Mauro, G.S., Rizzoli, R., Sorbello, G., Torrisi, G. (2022). Photonic Applications: Impact on “Dielectric Laser Acceleration” and Other Case Studies. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_10

Download citation

Publish with us

Policies and ethics