Skip to main content

Epigenetics and Phenotypic Plasticity in Animals

  • Chapter
  • First Online:
Epigenetics, Development, Ecology and Evolution

Abstract

Phenotypic plasticity sensu lato, the generation of different phenotypes from the same genome, is caused by developmental programmes, developmental stochasticity and environmental impacts. These triggers can evoke changes of DNA methylation and histone modification marks on the chromatin and of non-coding RNA pathways that regulate DNA expression, leading finally to the production of different phenotypes from the same DNA sequence. The power of epigenetic mechanisms in shaping of phenotypes is most impressively demonstrated by the structurally and functionally different cell types in the body of multicellular animals and the phenotypically very different life stages of holometabolous insects that are produced from the single DNA of the zygote. However, epigenetic mechanisms can also help generating substantial phenotypic variation in populations, as revealed by experiments with clonal animals. This phenotypic variation is caused by bed-hedging developmental stochasticity and directional environmental induction, which usually act together but in different weighing, depending on the environment. The generation of epigenetically mediated phenotypic plasticity is obviously effective in all animal populations, but is particularly important for clonal and genetically impoverished populations helping them to survive when the environmental conditions change. It also helps invasive groups, sessile taxa and populations in extreme habitats to adapt to their particularly challenging environments. Epigenetic mechanisms are evolutionarily relevant as well. They were shown to trigger trait alteration in early domestication and consolidate speciation by contributing to reproductive isolation, chromatin remodelling and alteration of gene expression. Some epigenetically mediated phenotypes can be inherited to the next generations, particularly if they provide advantages in changing or new environments. Under long-lasting favourable conditions, they may be genetically integrated, starting new evolutionary trajectories. Because epigenetic changes can either be the consequence of genetic changes or trigger genetic changes, depending on context, they can be both followers and leaders in animal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott R, Albach D, Ansell S et al (2013) Hybridization and speciation. J Evol Biol 26:229–246

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401:60–63

    Article  CAS  Google Scholar 

  • Albalat R, Martí-Solans J, Cañestro C (2012) DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief Funct Genom 11:142–155

    Article  CAS  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Castro-Díez P (2008) What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiol 614:107–116

    Article  Google Scholar 

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    Article  PubMed  Google Scholar 

  • Anastasiadi D, Piferrer F (2019) Epimutations in developmental genes underlie the onset of domestication in farmed European sea bass. Mol Biol Evol 36:2252–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiadi D, Esteve-Codina A, Piferrer F (2018) Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin 11:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Anastasiadi D, Venney CJ, Bernatchez L et al (2021) Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 36:1124–1140

    Article  PubMed  Google Scholar 

  • Andriantsoa R, Tönges S, Panteleit J et al (2019) Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol 19:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Angers B, Schlosser IJ (2007) The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol Ecol 16:4562–4571

    Article  CAS  PubMed  Google Scholar 

  • Angers B, Perez M, Menicucci T et al (2020) Sources of epigenetic variation and their applications in natural populations. Evol Applicat 13:1262–1278

    Article  Google Scholar 

  • Archer GS, Dindot S, Friend TH et al (2003) Hierarchical phenotypic and epigenetic variation in cloned swine. Biol Reprod 69:430–436

    Article  CAS  PubMed  Google Scholar 

  • Asselman J, De Coninck DIM, Pfrender ME et al (2016) Gene body methylation patterns in Daphnia are associated with gene family size. Genome Biol Evol 8:1185–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augusto RC, Minod A, Rey O et al (2021) A simple ATAC-seq protocol for population epigenetics, version 2. Wellcome Open Res 5:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayali A (2019) The puzzle of locust density-dependent phase polyphenism. Curr Opin Insect Sci 35:41–47

    Article  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter FA, Drake AJ (2018) Non-genetic inheritance via the male germline in mammals. Phil Trans R Soc B 374:20180118

    Article  Google Scholar 

  • Beck D, Ben Maamar M, Skinner MK (2021) Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenetics Chromatin 14:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker PB, Workman JL (2013) Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol 5:a017905

    Article  PubMed  PubMed Central  Google Scholar 

  • Beermann J, Piccoli M-T, Viereck J et al (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325

    Article  CAS  PubMed  Google Scholar 

  • Bell CG, Lowe R, Adams PD et al (2019) DNA methylation aging clocks: challenges and recommendations. Genome Biol 20:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Bélteky J, Agnvall B, Bektic L et al (2018) Epigenetics and early domestication: differences in hypothalamic DNA methylation between red junglefowl divergently selected for high or low fear of humans. Genet Selec Evol 50:13

    Article  Google Scholar 

  • Bewick AJ, Vogel KJ, Moore AJ et al (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34:654–665

    CAS  PubMed  Google Scholar 

  • Blake LE, Roux J, Hernando-Herraez I et al (2020) A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res 30:1–13

    Article  Google Scholar 

  • Blewitt ME, Vickaryous NK, Paldi A et al (2006) Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet 2:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohman P, Edsman L, Martin P et al (2013) The first Marmorkrebs (Decapoda: Astacida: Cambaridae) in Scandinavia. BioInvasions Rec 2:227–232

    Article  Google Scholar 

  • Branciamore S, Rodin AS, Riggs AD et al (2014) Enhanced evolution by stochastically variable modification of epigenetic marks in the early embryo. Proc Natl Acad Sci U S A:6353–6358

    Google Scholar 

  • Burggren W (2016) Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5:24

    Article  PubMed Central  Google Scholar 

  • Burrows M, Rogers SM, Ott ST (2011) Epigenetic remodelling of brain, body and behaviour during phase change in locusts. Neural Syst Circuits 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Cagan A, Blass T (2016) Identification of genomic variants putatively targeted by selection during dog domestication. BMC Evol Biol 16:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cain CE, Blekhman R, Marioni JC et al (2011) Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 187:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso-Júnior CAM, Fujimura PT, Santos-Júnior CD et al (2017) Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris. Genet Mol Biol 40:61–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas E, Vavouri T (2020) Mechanisms of epigenetic inheritance of variable traits through the germline. Reproduction 159:R251–R263

    Article  CAS  PubMed  Google Scholar 

  • Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571:489–499

    Article  CAS  PubMed  Google Scholar 

  • Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29:386–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev 33:593–600

    Article  PubMed  Google Scholar 

  • Chang AY-F, Liao B-Y (2012) DNA methylation rebalances gene dosage after mammalian gene duplications. Mol Biol Evol 29:133–144

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ge X, Wang J et al (2015) Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. Front Plant Sci 6:836

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen MJ, Chen LK, Lai YS et al (2016a) Integrating RNA-seq and ChIP-seq data to characterize long non-coding RNAs in Drosophila melanogaster. BMC Genomics 17:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yan W, Duan E (2016b) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Epigenet 17:733–743

    Article  CAS  Google Scholar 

  • Chucholl C, Morawetz K, Groß H (2012) The clones are coming – strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat Invasions 7:511–519

    Article  Google Scholar 

  • Ciabrelli F, Comoglio F, Fellous S et al (2017) Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat Genet 49:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortijo S, Wardenaar R, Colomé-Tatché M et al (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Coutinho Carneiro V, Lyko F (2020) Rapid epigenetic adaptation in animals and its role in invasiveness. Integr Comp Biol 60:267–274

    Article  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB et al (2010) CpG methylation of a silent controlling element in the murine Avy allele is incomplete and unresponsive to methyl donor supplementation. PLoS One 5:e9055

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlet T, Argüeso Lleida A, Al Adhami H et al (2020) Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat Commun 11:3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danisman S (2016) TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci 7:1930

    Article  PubMed  PubMed Central  Google Scholar 

  • DeWitt T, Scheiner SM (eds) (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, NY

    Google Scholar 

  • Dolinoy DC, Weinhouse C, Jones TR et al (2010) Variable histone modifications at the Avy metastable epiallele. Epigenetics 5:637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Q, Luu P-L, Stirzaker C et al (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051–1073

    Article  CAS  PubMed  Google Scholar 

  • Dümpelmann C, Bonacker F (2012) Erstnachweis des Marmorkrebses Procambarus fallax f. virginalis (Decapoda: Cambaridae) in Hessen. Forum Flusskrebse 18:3–12

    Google Scholar 

  • Dybdahl MF, Drown DM (2011) The absence of genotypic diversity in a successful parthenogenetic invader. Biol Invasions 13:1663–1672

    Article  Google Scholar 

  • Ehrenreich IM, Pfennig DW (2016) Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Ann Bot 117:769–779

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg E, Levanon EY (2018) A-to-I RNA editing–immune protector and transcriptome diversifier. Nat Rev Genet 19:473–490

    Article  CAS  PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, CA, pp 82–115

    Google Scholar 

  • Ernst UR, Van Hiel MB, Depuydt G et al (2015) Epigenetics and locust life phase transitions. J Exp Biol 218:88–99

    Article  PubMed  Google Scholar 

  • Falckenhayn C (2016) The methylome of the marbled crayfish Procambarus virginalis. Doctoral thesis. University of Heidelberg, Heidelberg, Germany

    Google Scholar 

  • Falckenhayn C, Boerjan B, Raddatz G et al (2013) Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. J Exp Biol 216:1423–1429

    CAS  PubMed  Google Scholar 

  • Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669

    Article  PubMed  Google Scholar 

  • Feinberg AP, Irizarry RA (2010) Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A 107(Suppl 1):1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Flamme A (1977) Untersuchungen über die Ursachen der phänotypischen Varianz quantitativer Merkmale bei Laboratoriumsratten. Doktorarbeit. Technische Universität Hannover, Hannover, Germany

    Google Scholar 

  • Foret S, Kucharski R, Pellegrini M et al (2012) DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A 109:4968–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foquet B, Castellanos AA, Song H (2021) Comparative analysis of phenotypic plasticity sheds light on the evolution and molecular underpinnings of locust phase polyphenism. Sci Rep 11:11925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox RJ, Donelson JM, Schunter C et al (2019) Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil Trans R Soc Lond B 374:20180174

    Article  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franchini P, Xiong P, Fruciano C et al (2016) The role of microRNAs in the repeated parallel diversification of lineages of Midas cichlid fish from Nicaragua. Genome Biol Evol 8:1543–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias-Laserre D, Villagra CA (2017) The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front Microbiol 8:2483

    Article  Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Phil Trans R Soc Lond B 365:547–556

    Article  Google Scholar 

  • Gajigan AP, Conaco C (2017) A microRNA regulates the response of corals to thermal stress. Mol Ecol 26:3472–3483

    Article  CAS  PubMed  Google Scholar 

  • Gallego Romero I, Ruvinsky I, Gilad Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13:505–516

    Article  Google Scholar 

  • Gärtner K (1990) A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24:71–77

    Article  PubMed  Google Scholar 

  • Gatzmann F, Falckenhayn C, Gutekunst J et al (2018) The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics Chromatin 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge C, Ye J, Weber C et al (2018) The histone demethylase KDM6B regulates temperature dependent sex determination in a turtle species. Science 360:645–648

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Veeraraghavan B, Elangovan R et al (2020) Antibiotic resistance and epigenetics: more to it than meets the eye. Antimicrob Agents Chemother 64:e02225-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105:4–13

    Article  CAS  PubMed  Google Scholar 

  • Glastad KM, Hunt BG, Goodisman MAD (2018) Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annu Rev Entomol 64:185–203

    Article  PubMed  Google Scholar 

  • Gore AV, Tomins KA, Iben J et al (2018) An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol 2:1155–1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham JH, Raz S, Hel-Or H et al (2010) Fluctuating asymmetry: methods, theory, and applications. Symmetry 2:466–540

    Article  Google Scholar 

  • Greenberg MVC, Bourc'his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The evolution of the genome. Academic Press, New York, NY, pp 427–517

    Chapter  Google Scholar 

  • Grimmer AU (2015) Analysis of DNA methylation dynamics during Marmorkrebs (Procambarus fallax forma virginalis) development. Master's Thesis. Faculty of Biosciences. University of Heidelberg, Heidelberg, Germany

    Google Scholar 

  • Guillette LJ Jr, Parrott BB, Nilsson E et al (2016) Epigenetic programming alterations in alligators from environmentally contaminated lakes. Gen Comp Endocrinol 238:4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutekunst J, Andriantsoa R, Falckenhayn C et al (2018) Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat Ecol Evol 2:567–573

    Article  PubMed  Google Scholar 

  • Hallgrímsson B, Hall BK (2011) Epigenetics: the context of development. In: Hallgrímsson B, Hall BK (eds) Epigenetics: linking genotype and phenotype in development and evolution. University of California Press, Berkeley, CA, pp 424–438

    Chapter  Google Scholar 

  • Hao N, Xin H, Shi X et al (2021) Paternal reprogramming-escape histone H3K4me3 marks located within promoters of RNA splicing genes. Bioinformatics 37:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Herb BR, Wolschin F, Hansen KD et al (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 15:1371–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houri-Ze’evi L, Rechavi O (2017) A matter of time: small RNAs regulate the duration of epigenetic inheritance. Trends Genet 33:46–57

    Article  Google Scholar 

  • Huang Q, Ma C, Chen L et al (2018) Mechanistic insights into the interaction between transcription factors and epigenetic modifications and the contribution to the development of obesity. Front Endocrinol 9:370

    Article  Google Scholar 

  • Iguchi K, Matsubara N, Hakoyama H (2001) Behavioural individuality assessed from two strains of cloned fish. Anim Behav 61:351–356

    Article  Google Scholar 

  • Inoue J, Sato Y, Sinclair R et al (2015) Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci U S A 112:14918–14923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isakova A, Fehlmann T, Keller A et al (2020) A mouse tissue atlas of small noncoding RNA. Proc Natl Acad Sci U S A 117:25634–25645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonka E (2017) The evolutionary implications of epigenetic inheritance. Interface Focus 7:20160135

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Janowitz Koch I, Clark MM, Thompson MJ et al (2016) The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol 25:1838–1855

    Article  CAS  PubMed  Google Scholar 

  • Jensen P (2015) Adding ‘epi-’ to behaviour genetics: implications for animal domestication. J Exp Biol 218:32–40

    Article  PubMed  Google Scholar 

  • Jiang L, Zhang J, Wang JJ et al (2013) Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Lin D, Huang H et al (2020) DNA methylation inhibits the expression of CFSH in mud crab. Front Endocrinol 11:163

    Article  Google Scholar 

  • Jirtle R (2014) The agouti mouse: a biosensor for environmental epigenomics studies investigating the developmental origins of health and disease. Epigenomics 6:447–450

    Article  CAS  PubMed  Google Scholar 

  • Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Jones JPG, Rasamy JR, Harvey A et al (2009) The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol Invasions 11:1475–1482

    Article  Google Scholar 

  • Jones CM, Lim KS, Chapman JW et al (2018) Genome-wide characterization of DNA methylation in an invasive lepidopteran pest, the cotton bollworm Helicoverpa armigera. G3 8:779–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justice SS, Hunstad DA, Cegelski L et al (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168

    Article  CAS  PubMed  Google Scholar 

  • Jutapakdeegul N, Casalotti SO, Govitrapong P et al (2003) Postnatal touch stimulation acutely alters corticosterone levels and glucocorticoid receptor gene expression in the neonatal rat. Dev Neurosci 25:26–33

    Article  CAS  PubMed  Google Scholar 

  • Kang JG, Park JS, Ko J-H et al (2019) Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep 9:11960

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelsh RN, Harris ML, Colanesi S et al (2008) Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates. Sem Cell Dev Biol 20:90–104

    Article  Google Scholar 

  • Konstantinidis J, Sætrom P, Mjelle R et al (2020) Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics 15:1052–1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Koroma AP, Jones R, Michalak P (2011) Snapshot of DNA methylation changes associated with hybridization in Xenopus. Physiol Genomics 43:1276–1280

    Article  CAS  PubMed  Google Scholar 

  • Kribelbauer JF, Lu X-J, Rohs R et al (2020) Toward a mechanistic understanding of DNA methylation readout by transcription factors. J Mol Biol 432:1801–1815

    Article  CAS  Google Scholar 

  • Krois NR, Cherukuri A, Puttagunta N et al (2013) Higher rate of tissue regeneration in polyploid asexual versus diploid sexual freshwater snails. Biol Lett 9:0130422

    Article  Google Scholar 

  • Kronholm I, Collins S (2016) Epigenetic mutations can both help and hinder adaptive evolution. Mol Ecol 25:1856–1868

    Article  CAS  PubMed  Google Scholar 

  • Kvist J, Gonçalves Athanàsio C, Pfrender ME et al (2020) A comprehensive epigenomic analysis of phenotypically distinguishable, genetically identical female and male Daphnia pulex. BMC Genomics 21:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laforsch C, Tollrian R (2004) Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85:2302–2311

    Article  Google Scholar 

  • Laland KN, Uller T, Feldman MW et al (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B 282:20151019

    Article  PubMed  PubMed Central  Google Scholar 

  • Landge AN, Jordan BM, Diego X et al (2020) Pattern formation mechanisms of self-organizing reaction-diffusion systems. Dev Biol 460:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry AM, Landry DJ, Gentry LR et al (2005) Endocrine profiles and growth patterns of cloned goats. Cloning Stem Cells 7:214–225

    Article  CAS  PubMed  Google Scholar 

  • Laporte M, Le Luyer J, Rougeux C et al (2019) DNA methylation reprogramming, TE derepression, and postzygotic isolation of nascent animal species. Sci Adv 5:eaaw1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson G, Fuller DQ (2014) The evolution of animal domestication. Annu Rev Ecol Evol Syst 45:115–136

    Article  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrand C, Andriantsoa R, Lichter P et al (2021) Time-resolved, integrated analysis of clonal genome evolution in parthenogenetic animals and in cancer. bioRxiv preprint; https://doi.org/10.1101/2021.10.08.463633

  • Le Luyer J, Laporte M, Beacham TD et al (2017) Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc Natl Acad Sci U S A 114:12964–12969

    Article  PubMed  PubMed Central  Google Scholar 

  • Lennartsson A, Ekwall K (2009) Histone modification patterns and epigenetic codes. Biochim Biophys Acta 1790:863–868

    Article  CAS  PubMed  Google Scholar 

  • Leung C, Breton S, Angers B (2016) Facing environmental predictability with different sources of epigenetic variation. Ecol Evol 6:5234–5245

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M-Z, Xiao H-M, He K et al (2019) Progress and prospects of noncoding RNAs in insects. J Integr Agric 18:729–747

    Article  CAS  Google Scholar 

  • Liew YJ, Zoccola D, Li Y et al (2018) Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv 4:eaar8028

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew YJ, Howells EJ, Wang X et al (2020) Intergenerational epigenetic inheritance in reef-building corals. Nat Climate Change 10:254–259

    Article  Google Scholar 

  • Linzmaier SM, Musseau C, Matern S et al (2020) Trophic ecology of invasive marbled and spiny-cheek crayfish populations. Biol Invasions 22:3339–3356

    Article  Google Scholar 

  • Liu Y, Cheng J, Siejka-Zielińska P et al (2020) Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biol 21:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Loaeza-Loaeza J, Beltran AS, Hernández-Sotelo D (2020) DNMTs and impact of CpG content, transcription factors, consensus motifs, lncRNAs, and histone marks on DNA methylation. Genes 11:1336

    Article  CAS  PubMed Central  Google Scholar 

  • Lokk K, Modhukur V, Rajashekar B et al (2014) DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15:r54

    Article  PubMed  PubMed Central  Google Scholar 

  • Lőkkös A, Müller T, Kovács K et al (2016) The alien, parthenogenetic marbled crayfish (Decapoda: Cambaridae) is entering Kis-Balaton (Hungary), one of Europe's most important wetland biotopes. Knowl Manag Aquat Ecosyst 417:16

    Article  Google Scholar 

  • Long Y, Wang X, Youmans DT et al (2017) How do lncRNAs regulate transcription? Sci Adv 3:eaao2110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutsenko E, Bhagwat AS (1999) Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutation Res 437:11–20

    Article  CAS  PubMed  Google Scholar 

  • Lyko F (2017) The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363:544–552

    Article  PubMed  Google Scholar 

  • Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19:81–92

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Foret S, Kucharski R et al (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    Article  PubMed  PubMed Central  Google Scholar 

  • Madlung A, Wendel JF (2013) Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res 140:270–285

    Article  CAS  PubMed  Google Scholar 

  • Maiakovska O, Andriantsoa R, Tönges S et al (2021) Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun Biol 4:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone JH, Chrzanowski TH, Michalak P (2007) Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLoS One 2:e781

    Article  PubMed  PubMed Central  Google Scholar 

  • Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789:58–68

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R, Zhou M-M (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6:a018762

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin P, Dorn NJ, Kawai T et al (2010) The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib Zool 79:107–118

    Article  Google Scholar 

  • Martin P, Thonagel S, Scholtz G (2015) The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J Zool Syst Evol Res 54:13–21

    Article  Google Scholar 

  • Massicotte R, Angers B (2012) General-purpose genotype or how epigenetics extend the flexibility of a genotype. Genet Res Internat 2012:317175

    Google Scholar 

  • McGowan PO, Suderman M, Sasaki A et al (2011) Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6:e14739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore DS (2001) The dependent gene: the fallacy of “nature vs. nurture. Freeman, New York, NY

    Google Scholar 

  • Morgan MAJ, Shilatifard A (2020) Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 52:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Moutinho C, Esteller M (2017) MicroRNAs and epigenetics. Adv Cancer Res 135:189–220

    Article  CAS  PubMed  Google Scholar 

  • Neiman M, Jokela J, Lively CM (2005) Variation in asexual lineage age in Potamopyrgus antipodarum, a New Zealand snail. Evolution 59:1945–1952

    Article  CAS  PubMed  Google Scholar 

  • Neri F, Rapelli S, Krepelova A et al (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (1990) A comprehensive model for colour pattern formation in butterflies. Proc R Soc B 239:81–113

    Google Scholar 

  • Nohara K, Baba T, Murai H et al (2011) Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch Toxicol 85:653–661

    Article  CAS  PubMed  Google Scholar 

  • O'Brien J, Hayder H, Zayed Y et al (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:40

    Article  Google Scholar 

  • Oey H, Isbel L, Hickey P et al (2015) Genetic and epigenetic variation among inbred mouse littermates: identification of inter-individual differentially methylated regions. Epigenetics Chromatin 8:54

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  CAS  PubMed  Google Scholar 

  • Parsons PA (1992) Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68:361–364

    Article  PubMed  Google Scholar 

  • Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez MF, Lehner B (2019) Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol 21:143–151

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Pigliucci M (2010) Genotype–phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Phil Trans R Soc Lond B 365:557–566

    Article  CAS  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    Article  PubMed  Google Scholar 

  • Pijanowska J (1990) Cyclomorphosis in Daphnia: an adaptation to avoid invertebrate predation. Hydrobiologia 198:41–50

    Article  Google Scholar 

  • Provataris P, Meusemann K, Niehuis O et al (2018) Signatures of DNA methylation across insects suggest reduced DNA methylation levels in Holometabola. Genome Biol Evol 10:1185–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raddatz G, Guzzardo PM, Olova N et al (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci U S A 110:8627–8631

    Article  PubMed  PubMed Central  Google Scholar 

  • Raddatz G, Arsenault RJ, Aylward B et al (2021) A chicken DNA methylation clock for the prediction of broiler health. Commun Biol 4:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakyan VK, Blewitt ME, Druker R et al (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran M, Jurkowska RZ, Jurkowski TP (2018) Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 16:1419

    Article  CAS  PubMed  Google Scholar 

  • Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolff J, Johnston PR, Reynolds S (2019) Complete metamorphosis of insects. Phil Trans R Soc B 374:20190063

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmento OF, Digilio LC, Wang Y et al (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117:4449–4459

    Article  CAS  PubMed  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Scholtz G, Braband A, Tolley L et al (2003) Parthenogenesis in an outsider crayfish. Nature 421:806

    Article  CAS  PubMed  Google Scholar 

  • Schübeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  PubMed  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA et al (2012) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil Trans R Soc B 368:20110330

    Article  Google Scholar 

  • Seitz R, Vilpoux K, Hopp U et al (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool A 303:393–405

    Article  Google Scholar 

  • Senti KA, Brennecke J (2010) The piRNA pathway: a fly’s perspective on the guardian of the genome. Trends Genet 26:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson SJ, Sword GA, Lo N (2011) Polyphenism in insects. Curr Biol 21:R738–R749

    Article  CAS  PubMed  Google Scholar 

  • Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398:4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK (2015) Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol Evol 7:1296–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK, Nilsson EE (2021) Role of environmentally induced epigenetic transgenerational inheritance in evolutionary biology: unified evolution theory. Environ Epigenet 7:1–12

    Article  CAS  Google Scholar 

  • Skinner MK, Gurerrero-Bosagna C, Muksitul Haque M et al (2014) Epigenetics and the evolution of Darwin’s finches. Genome Biol Evol 6:1972–1989

    Article  PubMed  PubMed Central  Google Scholar 

  • Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia 101:823–832

    Article  PubMed  Google Scholar 

  • Smith TA, Martin M, Nguyen M et al (2016) Epigenetic divergence as a potential first step in darter speciation. Mol Ecol 25:1883–1894

    Article  CAS  PubMed  Google Scholar 

  • Standage DS, Berens AJ, Glastad KM et al (2016) Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol Ecol 25:1769–1784

    Article  CAS  PubMed  Google Scholar 

  • Steffen PA, Ringrose L (2014) What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 15:340–356

    Article  CAS  PubMed  Google Scholar 

  • Storrs EE, Williams RJ (1968) A study of monozygous quadruplet armadillos in relation to mammalian inheritance. Proc Natl Acad Sci U S A 60:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strader ME, Kozal LC, Leach TS et al (2020) Examining the role of DNA methylation in transcriptomic plasticity of early stage sea urchins: developmental and maternal effects in a kelp forest herbivore. Front Mar Sci 7:205

    Article  Google Scholar 

  • Strecker U, Hausdorf B, Wilkens H (2013) Parallel speciation in Astyanax cave fish (Teleostei) in northern Mexico. Mol Phylogenet Evol 62:62–70

    Article  Google Scholar 

  • Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20:257–272

    Article  CAS  PubMed  Google Scholar 

  • Stubbs TM, Bonder MJ, Stark A-K et al (2017) Multi-tissue DNA methylation age predictor in mouse. Genome Biol 18:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Szyf M, Weaver ICG, Champagne FA et al (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26:139–162

    Article  CAS  PubMed  Google Scholar 

  • Telechea F (2018) Fish domestication: an overview. IntechOpen 2019:1–22

    Google Scholar 

  • Thorne JL, Campbell MJ, Turner BM (2009) Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 41:164–175

    Article  CAS  PubMed  Google Scholar 

  • Thorson JLM, Smithson M, Beck D et al (2017) Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci Rep 7:14139

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorson JLM, Smithson M, Sadler-Riggleman et al (2019) Regional epigenetic variation in asexual snail populations among urban and rural lakes. Environ Epigenet 5:dvz020

    Google Scholar 

  • Tönges S, Masagounder K, Lenich F et al (2021a) Evaluating invasive marbled crayfish as a potential livestock for sustainable aquaculture. Front Ecol Evol 9:651981

    Article  Google Scholar 

  • Tönges S, Venkatesh G, Andriantsoa R et al (2021b) Location-dependent DNA methylation signatures in a clonal invasive crayfish. Front Cell Dev Biol 9:794506

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyota K, Miyakawa H, Hiruta C et al (2021) Sex determination and differentiation in decapod and cladoceran crustaceans: an overview of endocrine regulation. Genes 12:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trut LN, Kharlamova AV (2020) Domestication as a process generating phenotypic diversity. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Phenotypic switching: implications in biology and medicine. Academic Press, San Diego, CA, pp 511–527

    Chapter  Google Scholar 

  • Turner BM (2009) Epigenetic responses to environmental change and their evolutionary implications. Phil Trans R Soc B 364:3403–3418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbano A, Smith J, Weeks RJ et al (2019) Gene-specific targeting of DNA methylation in the mammalian genome. Cancers 11:1515

    Article  CAS  PubMed Central  Google Scholar 

  • Vandeputte M, Gagnaire P-A, Allal F (2019) The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 50:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Graaf A, Wardenaar R, Neumann DA et al (2015) Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci U S A 112:6676–6681

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhaegen G, von Jungmeister MK, Haase M (2021) Life history variation in space and time: environmental and seasonal responses of a parthenogenetic invasive freshwater snail in northern Germany. Hydrobiol 848:2153–2168

    Article  Google Scholar 

  • Veselý L, Ruokonen TJ, Weiperth A et al (2021) Trophic niches of three sympatric invasive crayfish of EU concern. Hydrobiol 848:727–737

    Article  Google Scholar 

  • Villagra C, Frías-Lasserre D (2020) Epigenetic molecular mechanisms in insects. Neotrop Entomol 49:615–642

    Article  CAS  PubMed  Google Scholar 

  • Vogt G (2008) The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J Zool 276:1–13

    Article  Google Scholar 

  • Vogt G (2010) Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 11:643–669

    Article  PubMed  Google Scholar 

  • Vogt G (2015a) Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 40:159–204

    Article  PubMed  Google Scholar 

  • Vogt G (2015b) Bimodal annual reproduction pattern in laboratory-reared marbled crayfish. Invert Reprod Dev 59:218–223

    Article  Google Scholar 

  • Vogt G (2017) Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigenet 3:dvx002

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt G (2018a) Annotated bibliography of the parthenogenetic marbled crayfish, Procambarus virginalis, a new research model, potent invader and popular pet. Zootaxa 4418:301–352

    Article  PubMed  Google Scholar 

  • Vogt G (2018b) Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: a review and perspectives. J Biosci 43:189–223

    Article  CAS  PubMed  Google Scholar 

  • Vogt G (2019a) Estimating the young evolutionary age of marbled crayfish from museum samples. J Nat Hist 53:2353–2363

    Article  Google Scholar 

  • Vogt G (2019b) Functional cytology of the hepatopancreas of decapod crustaceans. J Morphol 280:1405–1444

    CAS  PubMed  Google Scholar 

  • Vogt G (2020a) An overview of sexual systems. In: Cothran RD, Thiel M (eds) The natural history of the Crustacea. Volume 6: Reproductive biology. Oxford University Press, New York, NY, pp. 145–176

    Google Scholar 

  • Vogt G (2020b) Disentangling the environmentally induced and stochastic developmental components of phenotypic variation. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Phenotypic switching: implications in biology and medicine. Academic Press, San Diego, CA, pp 207–251

    Chapter  Google Scholar 

  • Vogt G (2020c) Biology, ecology, evolution, systematics and utilization of the parthenogenetic marbled crayfish, Procambarus virginalis. In: Ribeiro FB (ed) Crayfish: evolution, habitat and conservation strategies. Nova Science Publishers, New York, NY, pp 137–227

    Google Scholar 

  • Vogt G (2021) Epigenetic variation in animal populations: sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 46:24

    Article  CAS  PubMed  Google Scholar 

  • Vogt G (2022a) Evolution, functions and dynamics of epigenetic mechanisms in animals. In: Tollefsbol T (ed) Handbook of epigenetics: the new molecular and medical genetics, 3rd edn. Academic Press, Cambridge, MA. (in press)

    Google Scholar 

  • Vogt G (2022b) Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Sci Nat 109:14

    Article  Google Scholar 

  • Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582

    Article  PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311

    Article  PubMed  Google Scholar 

  • Vogt G, Huber M, Thiemann M et al (2008) Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–523

    Article  CAS  PubMed  Google Scholar 

  • Vogt G, Falckenhayn C, Schrimpf A et al (2015) The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol Open 4:1583–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt G, Lukhaup C, Pfeiffer M et al (2018) Morphological and genetic characterization of the marbled crayfish, including a determination key. Zootaxa 4524:329–350

    Article  PubMed  Google Scholar 

  • Vogt G, Dorn NJ, Pfeiffer M et al (2019) The dimension of biological change caused by autotriploidy: a meta-analysis with the triploid Procambarus virginalis and its diploid parent Procambarus fallax. Zool Anz 281:53–67

    Article  Google Scholar 

  • Voigt S, Kost L (2021) Differences in temperature-sensitive expression of PcG regulated genes among natural populations of Drosophila melanogaster. G3 11:jkab237

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrana PB (2007) Genomic imprinting as a mechanism of reproductive isolation in mammals. J Mammal 88:5–23

    Article  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Walser JC, Furano AV (2010) The mutational spectrum of non-CpG DNA varies with CpG content. Genome Res 20:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Fang X, Yang P et al (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957

    Article  PubMed  Google Scholar 

  • Wang Y, Xu T, He W et al (2017a) Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.). Genomics 110:35–42

    Article  PubMed  Google Scholar 

  • Wang L, Liu Z, Lin H et al (2017b) Epigenetic regulation of left–right asymmetry by DNA methylation. EMBO J 36:2987–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Luo X, Wang J et al (2018) MeDReaders: a database for transcription factors that bind to methylated DNA. Nucl Acids Res 46:D146–D151

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Chen S, Yang P et al (2009) Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol 10:R6

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Colot V (2012) Epialleles in plant evolution. Genome Biol 13:249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilton PR, Sloan DB, Logsdon JM Jr et al (2013) Characterization of transcriptomes from sexual and asexual lineages of a New Zealand snail (Potamopyrgus antipodarum). Mol Ecol Res 13:289–294

    Article  CAS  Google Scholar 

  • Wojciechowski M, Lowe R, Maleszka J et al (2018) Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Res 28:1–11

    Article  Google Scholar 

  • Wright D (2015) The genetic architecture of domestication in animals. Bioinform Biol Insights 9(Suppl 4):11–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  PubMed  Google Scholar 

  • Xiang J, Li F, Zhang C et al (2006) Evaluation of induced triploid shrimp Penaeus (Fenneropenaeus) chinensis cultured under laboratory conditions. Aquaculture 259:108–115

    Article  Google Scholar 

  • Xiao J, Song C, Liu S et al (2013) DNA methylation analysis of allotetraploid hybrids of red crucian carp (Carassius auratus red var.) and common carp (Cyprinus carpio L.). PLoS One 8:e56409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Tao Y, Gao X et al (2016) CRISPR-based approach for targeted DNA demethylation. Cell Discovery 2:16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagound B, Remnant EJ, Buchmann G et al (2020) Intergenerational transfer of DNA methylation marks in the honey bee. Proc Natl Acad Sci U S A 117:32519–32527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C-H, Pospisilik JA (2019) Polyphenism–a window into gene-environment interactions and phenotypic plasticity. Front Genet 10:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Wei Y, Jiang F et al (2014) MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genet 10:e1004206

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi SV, Goodisman MA (2009) Computational approaches for understanding the evolution of DNA methylation in animals. Epigenetics 4:551–556

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Morgunova E, Jolma A et al (2017) Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356:eaaj2239

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang MQ (2011) Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes. BMC Bioinform 12:155

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Y-Z, Jiang J et al (2020) The crosstalk between epigenetic mechanisms and alternative RNA processing regulation. Front Genet 11:998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L-Y, Song J, Liu Y et al (2020) Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11:792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Brown AP, Ji H (2020) The emerging role of ten-eleven translocation 1 in epigenetic responses to environmental exposures. Epigenet Insights 13:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogt, G. (2022). Epigenetics and Phenotypic Plasticity in Animals. In: Vaschetto, L.M. (eds) Epigenetics, Development, Ecology and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-031-13771-6_3

Download citation

Publish with us

Policies and ethics