Skip to main content

Ecosystem and Landscape Functions of the Coast: Recent Research Results

  • Chapter
  • First Online:
Southern Baltic Coastal Systems Analysis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 246))

  • 227 Accesses

Abstract

This part provides an overview of ecosystem and landscape functions of the Baltic coast based on recent research in the reed belt of the Darss-Zingst Bodden Chain, a sheltered lagoon system of the southern Baltic Sea. The coastline of these lagoons is dominated by common reed (Phragmites australis). Important physical and chemical functions of these shallow coastal ecosystems are: (1) erosion protection and vertical accretion, (2) carbon storage and sequestration, and (3) buffering of nutrients, especially phosphorus (encompassing the components sedimentation, sorption, precipitation, and plant uptake). Phragmites wetlands are very effective for erosion protection due to their dense rhizome network. Moreover, they can increase ground level elevation by biomass accumulation and sediment accretion. In the DZBC, the capacity to accrete sediments and biomass depends on the topography and land use of the hinterland. Carbon storage and sequestration are related to this vertical accretion. Sediment carbon stocks (down to 1 m depth) range between 8.3 and 37.7 kg C m−2. Phosphorus dynamics in the reed belts is governed by sorption, sedimentation, and plant uptake. Whereas sorption of P is reversible and governed by short-term meteorological and hydrodynamic processes, P accumulation by sedimentation and plant uptake is regulated on a longer term time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berthold M, Karstens S, Buczko U, Schumann R (2018) Potential export of soluble reactive phosphorus from a coastal wetland in a cold-temperate lagoon system: buffer capacities of macrophytes and impact on phytoplankton. Sci Total Environ 616–617:46–54

    Article  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat Bot 69:313–324

    Article  CAS  Google Scholar 

  • Bu N-S, Qua J-F, Li G, Zhao B, Zhang R-J, Fang C-M (2015) Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecol Eng 81:335–339

    Article  Google Scholar 

  • Callaway JC, DeLaune RD, Patrick WH (1996) Chernobyl 137Cs used to determine sediment accretion rates at selected northern European coastal wetlands. Limnol Oceanogr 41:444–450

    Article  CAS  Google Scholar 

  • Carman R, Wulff F (1989) Adsorption capacity of phosphorus in Baltic Sea sediments. Estuar Coast Mar Sci 29:447–456

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111–1122

    Article  Google Scholar 

  • Clevering OA, Lissner J (1999) Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 64:185–208

    Article  Google Scholar 

  • Craft C (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnol Oceanogr 52:1220–1230

    Article  CAS  Google Scholar 

  • Crooks S, Herr D, Tamelander J, Laffoley D, Vandever J (2011) Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. Environment department paper 121, World Bank, Washington, DC

    Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of marsh loss. Nature 490:388–392

    Article  CAS  Google Scholar 

  • Dietrich R, Liebsch G (2000) Zur Variabilität des Meeresspiegels an der Küste von Mecklenburg-Vorpommern. Zeitschrift f Geologische Wissenschaften 28:615–624

    Google Scholar 

  • Doody JP (2004) ‘Coastal squeeze’ – an historical perspective. J Coast Conserv 10:129–138

    Article  Google Scholar 

  • Doody JP (2013) Coastal squeeze and managed realignment in Southeast England, does it tell us anything about the future? Ocean Coast Manag 79:34–41

    Article  Google Scholar 

  • Engloner AI (2009) Structure, growth dynamics and biomass of reed (Phragmites australis) — a review. Flora 204:331–346

    Article  Google Scholar 

  • Fitzgerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  CAS  Google Scholar 

  • Gigante D, Landucci F, Venanzoni R (2013) The reed die-back syndrome and its implications for floristic and vegetational traits of Phragmitetum australis. Plant Sociology 50:3–16

    Google Scholar 

  • González-Alcaraz MN, Egea C, Jimenez-Carceles FJ, Parraga I, Maria-Cervantes A, Delgado MJ, Alvarez Rogel J (2012) Storage of organic carbon, nitrogen and phosphorus in the soil-plant system of Phragmites australis stands from a eutrophicated Mediterranean salt marsh. Geoderma 185:61–72

    Article  Google Scholar 

  • Hopkinson CS, Cai W-J, Hu X (2012) Carbon sequestration in wetland dominated coastal systems – a global sink of rapidly diminishing magnitude. Curr Opin Environ Sustain 4:186–194

    Article  Google Scholar 

  • Karsten U, Schumann R, Witte K (2003) Filter zwischen Land und See: Darß-Zingster Boddengewässer. Biol unserer Zeit 33:46–55

    Article  Google Scholar 

  • Karstens S, Buczko U, Glatzel S (2015) Phosphorus storage and mobilization in coastal Phragmites wetlands: influence of local-scale hydrodynamics. Estuar Coast Shelf Sci 164:124–133

    Article  CAS  Google Scholar 

  • Karstens S, Buczko U, Jurasinski G, Peticzka R, Glatzel S (2016a) Impact of adjacent land use on coastal wetland sediments. Sci Total Environ 550:337–348

    Article  CAS  Google Scholar 

  • Karstens S, Jurasinski G, Glatzel S, Buczko U (2016b) Dynamics of surface elevation and microtopography in different zones of a coastal Phragmites wetland. Ecol Eng 94:152–163

    Article  Google Scholar 

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60

    Article  CAS  Google Scholar 

  • Koenig S, Trémolières M (2018) Transfer of nitrogen and phosphorus nutrients in vegetated buffer zones receiving treatment plant effluent. Environ Process 5:555–575

    Article  CAS  Google Scholar 

  • Kulawardhana RW, Feagin RA, Popescu SC, Boutton TW, Yeager KM, Bianchi TS (2015) The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in spartina alterniflora dominated salt marshes. Estuar Coast Shelf Sci 154:48–57

    Article  Google Scholar 

  • Lampe R, Endtmann E, Janke W, Meyer H (2010) Relative sea-level development and isostasy along the NE German Baltic Sea coast during the past 9 ka. E&G Quat Sci J 59:3–20

    Article  Google Scholar 

  • Lastrucci L, Lazzaro L, Coppi A, Foggi B, Ferranti F, Venanzoni R, Cerri M, Ferri V, Gigante D, Reale L (2017) Demographic and macro-morphological evidence for common reed dieback in Central Italy. Plant Ecol & Divers 10:241–251

    Article  Google Scholar 

  • Lissner J, Schierup HH (1997) Effects of salinity on the growth of Phragmites australis. Aquat Bot 55:247–260

    Article  CAS  Google Scholar 

  • Luisetti T, Jackson EL, Turner RK (2013) Valuing the European ‘coastal blue carbon’ storage benefit. Mar Pollut Bull 71:101–106

    Article  CAS  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • MLUV-MV (2010) Regelwerk Küstenschutz Mecklenburg-Vorpommern - 2 - 1 / 2010 Küstenlängen Mecklenburg-Vorpommern

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Mozdzer TJ, Langley JA, Mueller P, Megonigal JP (2016) Deep rooting and global change facilitate spread of invasive grass. Biol Invasions 18:2619–2631

    Article  Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (eds) (2009) Blue carbon. A rapid response assessment. GRID-Arendal: United Nations Environment Programme. ISBN: 978-82-7701-060-1

    Google Scholar 

  • Nolte S, Koppenaal EC, Esselink P, Dijkema KS, Schuerch M, De Groot AV, Bakker JP, Temmerman S (2013) Measuring sedimentation in tidal marshes: a review on methods and their applicability in biogeomorphological studies. J Coast Conserv 17:301–325

    Article  Google Scholar 

  • Novotny K (2007) Untersuchung von Meeresspiegelvariationen in der Ostsee: Kombination von Satellitenaltimetrie, Pegelmessungen und einem ozeanographischen Modell. PhD diss. TU Dresden

    Google Scholar 

  • Ouyang X, Lee SY (2014) Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11:5057–5071

    Article  Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marba N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global blue carbon emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542

    Article  CAS  Google Scholar 

  • Reddy KR, DeBusk WF (1987) Nutrient storage capabilities of aquatic and wetland plants. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publ, pp 337–357

    Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146

    Article  CAS  Google Scholar 

  • Richardson CJ, Marshall PE (1986) Processes controlling movement, storage and export of phosphorus in a fen peatland. Ecol Monogr 56:279–302

    Article  Google Scholar 

  • Rodewald-Rudescu L (1974) Das Schilfrohr: Phragmites communis Trinus, 1st edn. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Rooth JE, Stevenson JC, Cornwall JC (2003) Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26:475–483

    Article  Google Scholar 

  • Schieferstein B (1997) Ökologische und molekularbiologische Untersuchungen an Schilf (Phragmites australis (Cav.) Trin. ex Steud.) im Bereich der Bornhöveder Seen, 1st edn. Verein zur Förderung der Ökosystemforschung zu Kiel e.V, Kiel

    Google Scholar 

  • Schlungbaum G (1982a) Sedimentchemische Untersuchungen in Küstengewässern der DDR. Teil 10: Die Rolle der Stoffaustauschprozesse an der Sediment/Wasser-Kontaktzone eutropher Flachgewässer und Möglichkeiten zur Untersuchung am Beispiel des Phosphatkreislaufes - ein Überblick am Beispiel der Darß-Zingster Boddenkette. Acta Hydrochim Hydrobiol 10(2):119–134

    Article  CAS  Google Scholar 

  • Schlungbaum G (1982b) Sedimentchemische Untersuchungen in Küstengewässern der DDR - Teil 11: Phosphatsorptionsgleichgewichte zwischen Sediment und Wasser in flachen eutrophen Küstengewässern. Acta Hydrochim Hydrobiol 10(2):135–152

    Article  CAS  Google Scholar 

  • Schlungbaum G, Baudler H, Nausch G (1994) Die Darß-Zingster Boddenkette - ein typisches Flachwasserästuar an der südlichen Ostseeküste. Rostock Meeresbiolog Beitr 2:5–26

    Google Scholar 

  • Schumann R, Baudler H, Glass Ä, Dümcke K, Karsten U (2006) Hydrography of the inner coastal water Darß Zingster Bodden chain (Southern Baltic Coast). J Mar Syst 60:330–344

    Article  Google Scholar 

  • Selig U, Schubert M, Eggert A, Steinhardt T, Sagert S, Schubert H (2007) The influence of sediments on soft bottom vegetation in inner coastal waters of Mecklenburg-Vorpommern (Germany). Estuar Coast Shelf Sci 71:241–249

    Article  Google Scholar 

  • Song K, Lee J, Cha C, Kang H (2015) Effects of Phragmites invasion on soil microbial activity and structure in a brackish marsh. Plant Soil 392:45–56

    Article  CAS  Google Scholar 

  • Umweltbundesamt (2017) Gewässer in Deutschland: Zustand und Bewertung, Dessau-Roßlau

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Buczko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buczko, U., Karstens, S., Schwark, F., Tonn, C., Jurasinski, G. (2023). Ecosystem and Landscape Functions of the Coast: Recent Research Results. In: Schubert, H., Müller, F. (eds) Southern Baltic Coastal Systems Analysis. Ecological Studies, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-031-13682-5_7

Download citation

Publish with us

Policies and ethics