Abstract
The search for research datasets is as important as laborious. Due to the importance of the choice of research data in further research, this decision must be made carefully. Additionally, because of the growing amounts of data in almost all areas, research data is already a central artifact in empirical sciences. Consequentially, research dataset recommendations can beneficially supplement scientific publication searches. We formulated the recommendation task as a retrieval problem by focussing on broad similarities between research datasets and scientific publications. In a multistage approach, initial recommendations were retrieved by the BM25 ranking function and dynamic queries. Subsequently, the initial ranking was re-ranked utilizing click feedback and document embeddings. The proposed system was evaluated live on real user interaction data using the STELLA infrastructure in the LiLAS Lab at CLEF 2021. Our experimental system could efficiently be fine-tuned before the live evaluation by pre-testing the system with a pseudo test collection based on prior user interaction data from the live system. The results indicate that the experimental system outperforms the other participating systems.
Keywords
- Living Labs
- (Online) Evaluation in IR
- Recommender System
- Research Dataset Retrieval
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99
Asadi, N., Metzler, D., Elsayed, T., Lin, J.: Pseudo test collections for learning web search ranking functions. In: Ma, W., Nie, J., Baeza-Yates, R., Chua, T., Croft, W.B. (eds.) Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, 25–29 July 2011, pp. 1073–1082. ACM (2011). https://doi.org/10.1145/2009916.2010058
Azzopardi, L., Balog, K.: Towards a living lab for information retrieval research and development. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 26–37. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23708-9_5
Balog, K., Schuth, A., Dekker, P., Schaer, P., Chuang, P.Y., Tavakolpoursaleh, N.: Overview of the trec 2016 open search track. In: Voorhees, E.M., Ellis, A. (eds.) TREC, vol. Special Publication 500–321. National Institute of Standards and Technology (NIST) (2016)
Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: a literature survey. Int. J. Digit. Libr. 17(4), 305–338 (2015). https://doi.org/10.1007/s00799-015-0156-0
Berendsen, R., Tsagkias, M., Weerkamp, W., de Rijke, M.: Pseudo test collections for training and tuning microblog rankers. In: Jones, G.J.F., Sheridan, P., Kelly, D., de Rijke, M., Sakai, T. (eds.) The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, Dublin, Ireland - July 28 - August 01 2013, pp. 53–62. ACM (2013). https://doi.org/10.1145/2484028.2484063
Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013). https://doi.org/10.1016/j.knosys.2013.03.012
Breuer, T., Schaer, P., Tavakolpoursaleh, N., Schaible, J., Wolff, B., Müller, B.: STELLA: towards a framework for the reproducibility of online search experiments. In: Clancy, R., Ferro, N., Hauff, C., Lin, J., Sakai, T., Wu, Z.Z. (eds.) Proceedings of the Open-Source IR Replicability Challenge co-located with 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR 2019, Paris, France, 25 July 2019. CEUR Workshop Proceedings, vol. 2409, pp. 8–11. CEUR-WS.org (2019), http://ceur-ws.org/Vol-2409/position01.pdf
Chapman, A., et al.: Dataset search: a survey. VLDB J. 29(1), 251–272 (2019). https://doi.org/10.1007/s00778-019-00564-x
Cohan, A., Feldman, S., Beltagy, I., Downey, D., Weld, D.S.: SPECTER: document-level representation learning using citation-informed transformers. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, 5–10 July 2020, pp. 2270–2282. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.207
Craswell, N., Zoeter, O., Taylor, M.J., Ramsey, B.: An experimental comparison of click position-bias models. In: Najork, M., Broder, A.Z., Chakrabarti, S. (eds.) Proceedings of the International Conference on Web Search and Web Data Mining, WSDM 2008, Palo Alto, California, USA, 11–12 February 2008, pp. 87–94. ACM (2008). https://doi.org/10.1145/1341531.1341545
Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Rev. Rev. Int. de Stat. 57(3), 238–247 (1989). http://www.jstor.org/stable/1403797
Hienert, D., Kern, D., Boland, K., Zapilko, B., Mutschke, P.: A digital library for research data and related information in the social sciences. In: Bonn, M., Wu, D., Downie, J.S., Martaus, A. (eds.) 19th ACM/IEEE Joint Conference on Digital Libraries, JCDL 2019, Champaign, IL, USA, 2–6 June 2019, pp. 148–157. IEEE (2019). https://doi.org/10.1109/JCDL.2019.00030
Kacprzak, E., Koesten, L., Ibáñez, L., Blount, T., Tennison, J., Simperl, E.: Characterising dataset search - an analysis of search logs and data requests. J. Web Semant. 55, 37–55 (2019). https://doi.org/10.1016/j.websem.2018.11.003
Kern, D., Mathiak, B.: Are there any differences in data set retrieval compared to well-known literature retrieval? In: Kapidakis, S., Mazurek, C., Werla, M. (eds.) TPDL 2015. LNCS, vol. 9316, pp. 197–208. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24592-8_15
Lommatzsch, A., Kille, B., Hopfgartner, F., Ramming, L.: Newsreel multimedia at mediaeval 2018: news recommendation with image and text content. In: Larson, M.A. (eds.) Working Notes Proceedings of the MediaEval 2018 Workshop, Sophia Antipolis, France, 29–31 October 2018. CEUR Workshop Proceedings, vol. 2283. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2283/MediaEval_18_paper_5.pdf
Roberts, K., et al.: Searching for scientific evidence in a pandemic: an overview of TREC-COVID. CoRR abs/2104.09632 (2021). https://arxiv.org/abs/2104.09632
Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at TREC-3. In: Harman, D.K. (ed.) Proceedings of The Third Text Retrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, 2–4 November 1994. NIST Special Publication, vol. 500–225, pp. 109–126. National Institute of Standards and Technology (NIST) (1994). http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
Schaer, P., Breuer, T., Castro, L.J., Wolff, B., Schaible, J., Tavakolpoursaleh, N.: Overview of lilas 2021 – living labs for academic search. In: Candan, K.S. (ed.) CLEF 2021. LNCS, vol. 12880, pp. 394–418. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_25
Schaer, P., Breuer, T., Castro, L.J., Wolff, B., Schaible, J., Tavakolpoursaleh, N.: Overview of lilas 2021 - living labs for academic search (extended overview). In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st - to - 24th, 2021. CEUR Workshop Proceedings, vol. 2936, pp. 1668–1699. CEUR-WS.org (2021). http://ceur-ws.org/Vol-2936/paper-143.pdf
Schaer, P., Schaible, J., Müller, B.: Living labs for academic search at CLEF 2020. In: ECIR 2020. LNCS, vol. 12036, pp. 580–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_75
Schaible, J., Breuer, T., Tavakolpoursaleh, N., Müller, B., Wolff, B., Schaer, P.: Evaluation Infrastructures for Academic Shared Tasks. Datenbank-Spektrum 20(1), 29–36 (2020). https://doi.org/10.1007/s13222-020-00335-x
Schuth, A., Balog, K., Kelly, L.: Overview of the living labs for information retrieval evaluation (LL4IR) CLEF lab 2015. In: Mothe, J. (ed.) CLEF 2015. LNCS, vol. 9283, pp. 484–496. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24027-5_47
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Keller, J., Munz, L.P.M. (2022). Evaluating Research Dataset Recommendations in a Living Lab. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-13643-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13642-9
Online ISBN: 978-3-031-13643-6
eBook Packages: Computer ScienceComputer Science (R0)