Skip to main content

The Intersection Curve of an Ellipsoid with a Torus Sharing the Same Center

  • Conference paper
  • First Online:
ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics (ICGG 2022)

Abstract

The main objective of this work is focused on classifying the families of curves defined by the intersection of an arbitrary ellipsoid with an arbitrary torus, sharing the same center, based on the number of their connected components and on the number of their auto-intersection points. The graphic geometric representation of these curves, in GeoGebra, and the respective algebraic descriptions, supported from a theoretical and computational point of view, were of fundamental importance for the development of this work. In this paper, we describe a procedure and the necessary implementations to achieve the objective outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bottema, O., Primrose, E.: Algebraic curves on a torus. In: Indagationes Mathematicae (Proceedings), vol. 77, pp. 333–338. North-Holland (1974)

    Google Scholar 

  2. Breda, A.M.R.D.A., Trocado, A.E.B.S., Dos Santos, J.M.D.S.: Torus and quadrics intersection using GeoGebra. In: Cheng, L.-Y. (ed.) ICGG 2021. AISC, vol. 1296, pp. 484–493. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63403-2_43

    Chapter  Google Scholar 

  3. Kim, K.J.: Torus and simple surface intersection based on a configuration space approach. Ph.D. thesis, Department of Computer Science and Engineering, POSTECH (1998). http://bh.knu.ac.kr/~kujinkim/papers/kjkim_thesis.pdf

  4. Michael McCarthy, J., Su, H.J.: The computation of reachable surfaces for a specified set of spatial displacements, pp. 709–735. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28247-5_22

  5. Moroni, L.: The toric sections: a simple introduction. arXiv preprint arXiv:1708.00803 (2017)

  6. Nicaise, P.: Courbes algébriques planes, cubiques et cycliques. Editions Publibook (2017)

    Google Scholar 

  7. Poncelet, J.V.: Applications d’analyse et de géométrie: qui ont servi de principal fondement au traité des propriétés projectives des figures: comprenant sept cahiers manuscrits rédigés à Sabatoff dans les prisons de Russie (1813–1814), et accompagnés de divers autres écrits, anciens ou nouveaux, vol. 1. Mallet-Bachelier (1862)

    Google Scholar 

  8. Vega, L.G.: A subresultant theory for multivariate polynomials. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC (1991). https://doi.org/10.1145/120694.120705

Download references

Acknowledgements

This research was supported by the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020; The Centre for Research and Innovation in Education (inED), through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the project UIDB/05198/2020; and Organization of Ibero-American States for Education, Science and Culture (OEI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Reis D’Azevedo Breda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breda, A.M.R.D., da Silva Trocado, A.E.B., Santos, J.M.D.S.D. (2023). The Intersection Curve of an Ellipsoid with a Torus Sharing the Same Center. In: Cheng, LY. (eds) ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics. ICGG 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-13588-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13588-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13587-3

  • Online ISBN: 978-3-031-13588-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics